简介
在并发编程中,线程池是不可或缺的工具。允许我们复用线程资源,减少线程创建和销毁的开销,提高程序响应速度。在Java中,ThreadPoolExecutor是核心实现。
线程池预先创建一定数量的线程存放于容器中,当需要执行新任务时,从容器中取出一个线程执行任务,而不是每次都创建新的线程。
ThreadPoolExecutor 重要属性及方法
低29位保存线程池线程数,高3位保存线程池状态
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
private static final int COUNT_BITS = Integer.SIZE - 3;
private static final int CAPACITY = (1 << COUNT_BITS) - 1;
// runState is stored in the high-order bits
private static final int RUNNING = -1 << COUNT_BITS;
private static final int SHUTDOWN = 0 << COUNT_BITS;
private static final int STOP = 1 << COUNT_BITS;
private static final int TIDYING = 2 << COUNT_BITS;
private static final int TERMINATED = 3 << COUNT_BITS;
// Packing and unpacking ctl
private static int runStateOf(int c) { return c & ~CAPACITY; }
private static int workerCountOf(int c) { return c & CAPACITY; }
private static int ctlOf(int rs, int wc) { return rs | wc; }
-
线程池线程数
private static int workerCountOf(int c) { return c & CAPACITY; }
-
线程池状态
private static int runStateOf(int c) { return c & ~CAPACITY; }
RUNNING
初始状态,此状态下可接收新任务和执行已添加任务
SHUTDOWN
当调用**shutdown()**方法,由RUNNING 变为SHUTDOWN。
此状态,不接收新任务,能继续处理已添加的任务。
STOP
调用shutdownNow(),由RUNNING或SHUTDOWN变为STOP。
此状态,不接收任务,不处理已添加任务,尝试中断正在执行的任务。
TIDYING
所有任务已终止,且任务数量为0,线程池就会变为TIDYING。
此状态下,线程池会执行函数terminated()
状态转换:
SHUTDOWN下,阻塞队列为空且线程池中执行的任务也为空,由SHUTDOWN变为TIEDYING
STOP下,执行的任务为空,由STOP变为TIEDYING
TERMINATED
执行完钩子函数,彻底终止,并进入TERMINATED
最终状态,不在进行操作
-
构造函数
public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler) { if (corePoolSize < 0 || maximumPoolSize <= 0 || maximumPoolSize < corePoolSize || keepAliveTime < 0) throw new IllegalArgumentException(); if (workQueue == null || threadFactory == null || handler == null) throw new NullPointerException(); this.acc = System.getSecurityManager() == null ? null : AccessController.getContext(); this.corePoolSize = corePoolSize; this.maximumPoolSize = maximumPoolSize; this.workQueue = workQueue; this.keepAliveTime = unit.toNanos(keepAliveTime); this.threadFactory = threadFactory; this.handler = handler; }
corePoolSize:基本线程数,空闲时也不会销毁(除非设置allowCoreThreadTimeOut,并且空闲时间超过keepAliveTime)
maximumPoolSize:线程池中允许最大线程数
keepAliveTime:线程数大于核心线程数时,空闲线程允许等待新任务最长时间
unit:keepAliveTime单位
workQueue:用于保存等待执行任务的阻塞队列
threadFactory:创建线程工厂
handler:无法处理新任务所用策略
CallerRunsPolicy:直接在调用execute方法的线程中运行该任务
AbortPolicy(默认):抛出RejectedExecutionException异常
DiscardPolicy:直接丢弃,不抛异常
DiscardOldestPolicy:丢弃队列中等待最长的任务,重新提交当前任务
源码分析
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
int c = ctl.get();
if (workerCountOf(c) < corePoolSize) {
// 核心线程
if (addWorker(command, true))
return;
c = ctl.get();
}
// 添加队列
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command))
reject(command);
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
// 非核心线程
else if (!addWorker(command, false))
reject(command);
}
从源码可以看出执行流程
-
线程数小于核心线程数,创建核心线程,返回;
-
RUNNING状态下,直接添加到队列中
-
非running状态,任务移除队列,并执行拒绝策略
-
再次检查线程数,为0,创建非核心线程
-
-
添加队列失败,创建非核心线程;
-
非核心线程创建失败,执行拒绝策略;
下面分析源码具体逻辑
addWorker(Runnable firstTask, boolean core):创建线程
private boolean addWorker(Runnable firstTask, boolean core) {
// 1. 线程数+1
retry:
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// 校验
// 非running && (shutdown && 任务为空或者队列为空),可以接收新任务,其他情况直接返回
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;
// 线程数+1
for (;;) {
int wc = workerCountOf(c);
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
if (compareAndIncrementWorkerCount(c))
break retry;
c = ctl.get(); // Re-read ctl
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
}
// 2. 创建线程
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
w = new Worker(firstTask);
final Thread t = w.thread;
if (t != null) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
// Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
int rs = runStateOf(ctl.get());
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
if (t.isAlive()) // precheck that t is startable
// t为工作线程,仍然存活,但已shutdown并且没有执行的任务,这种情况不被允许的
throw new IllegalThreadStateException();
workers.add(w);
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
if (workerAdded) {
t.start();
workerStarted = true;
}
}
} finally {
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}
分2部分
-
增加线程数
-
校验:非running && (shutdown && 任务为空或者队列为空),可以接收新任务,其他情况直接返回
-
线程数+1
-
-
创建线程
-
创建线程添加到容器中,并启动当前线程
-
异常处理:代码已注释,此时应该调用addWorkerFailed()
启动创建的线程,也就是Worker中的run方法
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
w.unlock(); // allow interrupts
boolean completedAbruptly = true;
try {
while (task != null || (task = getTask()) != null) {
w.lock();
// If pool is stopping, ensure thread is interrupted;
// if not, ensure thread is not interrupted. This
// requires a recheck in second case to deal with
// shutdownNow race while clearing interrupt
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
// stop 尝试中断任务
wt.interrupt();
try {
beforeExecute(wt, task);
Throwable thrown = null;
try {
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
afterExecute(task, thrown);
}
} finally {
task = null;
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally {
processWorkerExit(w, completedAbruptly);
}
}
-
执行当前任务或从队列中取任务执行
-
最后处理当前这个线程:processWorkerExit
getTask():从队列中获取任务
private Runnable getTask() {
// 是否因为超时而没获取到任务
boolean timedOut = false; // Did the last poll() time out?
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
// stop 及之后不在处理任务 或 队列为空
// 线程数-1
decrementWorkerCount();
return null;
}
int wc = workerCountOf(c);
// Are workers subject to culling?
// 允许核心线程超时或者大于核心线程数
boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
// 线程数大于 允许线程数 或 允许超时同时超时未获取到 现成数大于1或队列为空
if ((wc > maximumPoolSize || (timed && timedOut))
&& (wc > 1 || workQueue.isEmpty())) {
// 线程数-1
if (compareAndDecrementWorkerCount(c))
return null;
continue;
}
try {
Runnable r = timed ?
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
workQueue.take();
if (r != null)
return r;
timedOut = true;
} catch (InterruptedException retry) {
timedOut = false;
}
}
}
-
处于SHUTDOWN或STOP,并且队列为空,直接返回null
-
超过核心线程数,允许超时,队列轮训获取任务,获取不到返回null
-
如果没有超时限制,阻塞等待(take)获取一个任务
processWorkerExit:工作线程退出
private void processWorkerExit(Worker w, boolean completedAbruptly) {
if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted
// 工作线程异常,线程数-1
decrementWorkerCount();
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
completedTaskCount += w.completedTasks;
workers.remove(w);// 移除工作线程
} finally {
mainLock.unlock();
}
tryTerminate();// 尝试终止线程池
int c = ctl.get();
if (runStateLessThan(c, STOP)) {
if (!completedAbruptly) {
// 工作线程正常退出,是否需要创建新的线程
int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
if (min == 0 && ! workQueue.isEmpty())
min = 1;
if (workerCountOf(c) >= min)
return; // replacement not needed
}
addWorker(null, false);// 创建工作线程
}
}
-
异常退出:completedAbruptly(true),工作线程-1
-
更新完成任务计数,移除工作线程
-
调用tryTerminate,是否可关闭线程池
-
是否需要添加线程
-
状态低于STOP(接收新任务或处理队列任务)
-
工作线程正常退出
如果队列不为空,核心线程数为0,需要添加线程处理队列任务
-