动态规划在图搜索中的应用:Floyd算法详解

87 阅读6分钟

多源汇最短路问题-具有多个源点

Floyd算法 O(n^3)-动态规划

给定一个n个点m条边的有向图,图中可能存在重边和自环,边权可能为负数。

再给定k个询问,每个询问包含两个整数x和y,表示查询从点x到点y的最短距离,如果路径不存在,则输出“impossible”。

数据保证图中不存在负权回路。

输入格式

第一行包含三个整数n,m,k

接下来m行,每行包含三个整数x,y,z,表示点x和点y之间存在一条有向边,边长为z。

接下来k行,每行包含两个整数x,y,表示询问点x到点y的最短距离。

输出格式

共k行,每行输出一个整数,表示询问的结果,若询问两点间不存在路径,则输出“impossible”。

数据范围

1≤n≤200

1≤k≤n^2

1≤m≤20000

图中涉及边长绝对值均不超过10000。

输入样例

3 3 2

1 2 1

2 3 2

1 3 1

2 1

1 3

输出样例

impossible

1

算法分析

  • f[i, j, k]表示从i走到j的路径上除i和j点外只经过1到k的点的所有路径的最短距离。那么f[i, j, k] = min(f[i, j, k - 1), f[i, k, k - 1] + f[k, j, k - 1]。 因此在计算第k层的f[i, j]的时候必须先将第k - 1层的所有状态计算出来,所以需要把k放在最外层。

  • 读入邻接矩阵,将次通过动态规划装换成从i到j的最短距离矩阵

  • 在下面代码中,判断从ab是否是无穷大距离时,需要进行if(t > INF/2)判断,而并非是if(t == INF)判断,原因是INF是一个确定的值,并非真正的无穷大,会随着其他数值而受到影响,t大于某个与INF相同数量级的数即可

代码

C++

#include <iostream>
using namespace std;

const int N = 210, M = 2e+10, INF = 1e9;

int n, m, k, x, y, z;
int d[N][N];

void floyd() {
    for(int k = 1; k <= n; k++)
        for(int i = 1; i <= n; i++)
            for(int j = 1; j <= n; j++)
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}

int main() {
    cin >> n >> m >> k;
    for(int i = 1; i <= n; i++)
        for(int j = 1; j <= n; j++)
            if(i == j) d[i][j] = 0;
            else d[i][j] = INF;
    while(m--) {
        cin >> x >> y >> z;
        d[x][y] = min(d[x][y], z);
        //注意保存最小的边
    }
    floyd();
    while(k--) {
        cin >> x >> y;
        if(d[x][y] > INF/2) puts("impossible");
        //由于有负权边存在所以约大过INF/2也很合理
        else cout << d[x][y] << endl;
    }
    return 0;
}

Java

import java.util.Scanner;
/*
    给定一个n个点m条边的有向图,图中可能存在重边和自环,边权可能为负数。
    再给定k个询问,每个询问包含两个整数x和y,表示查询从点x到点y的最短距离,如果路径不存在,则输出“impossible”。
    数据保证图中不存在负权回路。

    输入格式
    第一行包含三个整数n,m,k
    接下来m行,每行包含三个整数x,y,z,表示存在一条从点x到点y的有向边,边长为z。
    接下来k行,每行包含两个整数x,y,表示询问点x到点y的最短距离。

    输出格式
    共k行,每行输出一个整数,表示询问的结果,若询问两点间不存在路径,则输出“impossible”。

    数据范围
    1≤n≤200,
    1≤k≤n^2
    1≤m≤20000,
    图中涉及边长绝对值均不超过10000。

    输入样例:
    3 3 2
    1 2 1
    2 3 2
    1 3 1
    2 1
    1 3
    输出样例:
    impossible
    1
 */
public class Main {
    /*解题思路,动态规划的思想
    假设节点序号是从1到n。
    假设f[0][i][j]是一个n*n的矩阵,第i行第j列代表从i到j的权值,如果i到j有边,那么其值就为ci,j(边ij的权值)。
    如果没有边,那么其值就为无穷大。

    f[k][i][j]代表(k的取值范围是从1到n),在考虑了从1到k的节点作为中间经过的节点时,从i到j的最短路径的长度。

    比如,f[1][i][j]就代表了,在考虑了1节点作为中间经过的节点时,从i到j的最短路径的长度。
    分析可知,f[1][i][j]的值无非就是两种情况,而现在需要分析的路径也无非两种情况,i=>j,i=>1=>j:
    【1】f[0][i][j]i=>j这种路径的长度,小于,i=>1=>j这种路径的长度
    【2】f[0][i][1]+f[0][1][j]i=>1=>j这种路径的长度,小于,i=>j这种路径的长度
    形式化说明如下:
    f[k][i][j]可以从两种情况转移而来:
    【1】从f[k−1][i][j]转移而来,表示i到j的最短路径不经过k这个节点
    【2】从f[k−1][i][k]+f[k−1][k][j]转移而来,表示i到j的最短路径经过k这个节点

    总结就是:f[k][i][j]=min(f[k−1][i][j],f[k−1][i][k]+f[k−1][k][j])
    从总结上来看,发现f[k]只可能与f[k−1]有关。
    */
    static int N = 210;
    static int n, m, q;
    static int[][] d = new int[N][N];
    static int INF = (int)1e9;
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        n = sc.nextInt(); m = sc.nextInt(); q = sc.nextInt();
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= n; j++) {
                if (i == j) d[i][j] = 0;
                else d[i][j] = INF;
            } 
        }

        for(int i = 0; i < m; i++) {
            int a = sc.nextInt(), b = sc.nextInt(), w = sc.nextInt();
            d[a][b] = Math.min(d[a][b], w);
        }

        Floyd();

        while (q-- > 0) {
            int a = sc.nextInt(), b = sc.nextInt();
            if (d[a][b] > INF / 2) System.out.println("impossible");
            else System.out.println(d[a][b]);
        }
    }

    private static void Floyd() {
        for (int k = 1; k <= n; k++) {
            for (int i = 1; i <= n; i++) {
                for (int j = 1; j <= n; j++) {
                    d[i][j] = Math.min(d[i][j], d[i][k] + d[k][j]);
                }
            }
        }
    }
}

图搜索的几种方法汇总

Dijkstra-朴素 O(n^2)

  1. 初始化距离数组, dist[1] = 0, dist[i] = inf;
  2. for n次循环 每次循环确定一个min加入S集合中,n次之后就得出所有的最短距离
  3. 将不在S中dist_min的点->t
  4. t->S加入最短路集合
  5. 用t更新到其他点的距离

Dijkstra-堆优化 O(mlogm)

  1. 利用邻接表,优先队列
  2. 在priority_queue[HTML_REMOVED], greater[HTML_REMOVED] > heap;中将返回堆顶
  3. 利用堆顶来更新其他点,并加入堆中类似宽搜

Bellman_ford O(nm)

  1. 注意连锁想象需要备份, struct Edge{inta,b,c} Edge[M];
  2. 初始化dist, 松弛dist[x.b] = min(dist[x.b], backup[x.a]+x.w);
  3. 松弛k次,每次访问m条边

Spfa O(n)~O(nm)

  1. 利用队列优化仅加入修改过的地方
  2. for k次
  3. for 所有边利用宽搜模型去优化bellman_ford算法
  4. 更新队列中当前点的所有出边

Floyd O(n^3)

  1. 初始化d
  2. k, i, j 去更新d