dispatch_after
- (void)cjl_testAfter{
/*
dispatch_after表示在某队列中的block延迟执行
应用场景:在主队列上延迟执行一项任务,如viewDidload之后延迟1s,提示一个alertview(是延迟加入到队列,而不是延迟执行)
*/
dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(2 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
NSLog(@"2s后输出");
});
}
dispatch_once
- (void)cjl_testOnce{
/*
dispatch_once保证在App运行期间,block中的代码只执行一次
应用场景:单例、method-Swizzling
*/
static dispatch_once_t onceToken;
dispatch_once(&onceToken, ^{
//创建单例、method swizzled或其他任务
NSLog(@"创建单例");
});
}
dispatch_apply
- (void)cjl_testApply{
/*
dispatch_apply将指定的Block追加到指定的队列中重复执行,并等到全部的处理执行结束——相当于线程安全的for循环
应用场景:用来拉取网络数据后提前算出各个控件的大小,防止绘制时计算,提高表单滑动流畅性
- 添加到串行队列中——按序执行
- 添加到主队列中——死锁
- 添加到并发队列中——乱序执行
- 添加到全局队列中——乱序执行
*/
dispatch_queue_t queue = dispatch_queue_create("CJL", DISPATCH_QUEUE_SERIAL);
NSLog(@"dispatch_apply前");
/**
param1:重复次数
param2:追加的队列
param3:执行任务
*/
dispatch_apply(10, queue, ^(size_t index) {
NSLog(@"dispatch_apply 的线程 %zu - %@", index, [NSThread currentThread]);
});
NSLog(@"dispatch_apply后");
}
dispatch_group_t
有以下两种使用方式
- 【方式一】使用
dispatch_group_async + dispatch_group_notify
- (void)cjl_testGroup1{
/*
dispatch_group_t:调度组将任务分组执行,能监听任务组完成,并设置等待时间
应用场景:多个接口请求之后刷新页面
*/
dispatch_group_t group = dispatch_group_create();
dispatch_queue_t queue = dispatch_get_global_queue(0, 0);
dispatch_group_async(group, queue, ^{
NSLog(@"请求一完成");
});
dispatch_group_async(group, queue, ^{
NSLog(@"请求二完成");
});
dispatch_group_notify(group, dispatch_get_main_queue(), ^{
NSLog(@"刷新页面");
});
}
- 【方式二】使用
dispatch_group_enter + dispatch_group_leave + dispatch_group_notify
- (void)cjl_testGroup2{
/*
dispatch_group_enter和dispatch_group_leave成对出现,使进出组的逻辑更加清晰
*/
dispatch_group_t group = dispatch_group_create();
dispatch_queue_t queue = dispatch_get_global_queue(0, 0);
dispatch_group_enter(group);
dispatch_async(queue, ^{
NSLog(@"请求一完成");
dispatch_group_leave(group);
});
dispatch_group_enter(group);
dispatch_async(queue, ^{
NSLog(@"请求二完成");
dispatch_group_leave(group);
});
dispatch_group_notify(group, dispatch_get_main_queue(), ^{
NSLog(@"刷新界面");
});
}
- 在方式二的基础上增加超时
dispatch_group_wait
- (void)cjl_testGroup3{
/*
long dispatch_group_wait(dispatch_group_t group, dispatch_time_t timeout)
group:需要等待的调度组
timeout:等待的超时时间(即等多久)
- 设置为DISPATCH_TIME_NOW意味着不等待直接判定调度组是否执行完毕
- 设置为DISPATCH_TIME_FOREVER则会阻塞当前调度组,直到调度组执行完毕
返回值:为long类型
- 返回值为0——在指定时间内调度组完成了任务
- 返回值不为0——在指定时间内调度组没有按时完成任务
*/
dispatch_group_t group = dispatch_group_create();
dispatch_queue_t queue = dispatch_get_global_queue(0, 0);
dispatch_group_enter(group);
dispatch_async(queue, ^{
NSLog(@"请求一完成");
dispatch_group_leave(group);
});
dispatch_group_enter(group);
dispatch_async(queue, ^{
NSLog(@"请求二完成");
dispatch_group_leave(group);
});
// long timeout = dispatch_group_wait(group, DISPATCH_TIME_NOW);
// long timeout = dispatch_group_wait(group, DISPATCH_TIME_FOREVER);
long timeout = dispatch_group_wait(group, dispatch_time(DISPATCH_TIME_NOW, 1 *NSEC_PER_SEC));
NSLog(@"timeout = %ld", timeout);
if (timeout == 0) {
NSLog(@"按时完成任务");
}else{
NSLog(@"超时");
}
dispatch_group_notify(group, dispatch_get_main_queue(), ^{
NSLog(@"刷新界面");
});
}
dispatch_barrier_sync & dispatch_barrier_async
栅栏函数,主要有两种使用场景:串行队列、并发队列
- (void)cjl_testBarrier{
/*
dispatch_barrier_sync & dispatch_barrier_async
应用场景:同步锁
等栅栏前追加到队列中的任务执行完毕后,再将栅栏后的任务追加到队列中。
简而言之,就是先执行栅栏前任务,再执行栅栏任务,最后执行栅栏后任务
- dispatch_barrier_async:前面的任务执行完毕才会来到这里
- dispatch_barrier_sync:作用相同,但是这个会堵塞线程,影响后面的任务执行
- dispatch_barrier_async可以控制队列中任务的执行顺序,
- 而dispatch_barrier_sync不仅阻塞了队列的执行,也阻塞了线程的执行(尽量少用)
*/
[self cjl_testBarrier1];
[self cjl_testBarrier2];
}
- (void)cjl_testBarrier1{
//串行队列使用栅栏函数
dispatch_queue_t queue = dispatch_queue_create("CJL", DISPATCH_QUEUE_SERIAL);
NSLog(@"开始 - %@", [NSThread currentThread]);
dispatch_async(queue, ^{
sleep(2);
NSLog(@"延迟2s的任务1 - %@", [NSThread currentThread]);
});
NSLog(@"第一次结束 - %@", [NSThread currentThread]);
//栅栏函数的作用是将队列中的任务进行分组,所以我们只要关注任务1、任务2
dispatch_barrier_async(queue, ^{
NSLog(@"------------栅栏任务------------%@", [NSThread currentThread]);
});
NSLog(@"栅栏结束 - %@", [NSThread currentThread]);
dispatch_async(queue, ^{
sleep(2);
NSLog(@"延迟2s的任务2 - %@", [NSThread currentThread]);
});
NSLog(@"第二次结束 - %@", [NSThread currentThread]);
}
- (void)cjl_testBarrier2{
//并发队列使用栅栏函数
dispatch_queue_t queue = dispatch_queue_create("CJL", DISPATCH_QUEUE_CONCURRENT);
NSLog(@"开始 - %@", [NSThread currentThread]);
dispatch_async(queue, ^{
sleep(2);
NSLog(@"延迟2s的任务1 - %@", [NSThread currentThread]);
});
NSLog(@"第一次结束 - %@", [NSThread currentThread]);
//由于并发队列异步执行任务是乱序执行完毕的,所以使用栅栏函数可以很好的控制队列内任务执行的顺序
dispatch_barrier_async(queue, ^{
NSLog(@"------------栅栏任务------------%@", [NSThread currentThread]);
});
NSLog(@"栅栏结束 - %@", [NSThread currentThread]);
dispatch_async(queue, ^{
sleep(2);
NSLog(@"延迟2s的任务2 - %@", [NSThread currentThread]);
});
NSLog(@"第二次结束 - %@", [NSThread currentThread]);
}
dispatch_semaphore_t
信号量主要用作同步锁,用于控制GCD最大并发数
- (void)cjl_testSemaphore{
/*
应用场景:同步当锁, 控制GCD最大并发数
- dispatch_semaphore_create():创建信号量
- dispatch_semaphore_wait():等待信号量,信号量减1。当信号量< 0时会阻塞当前线程,根据传入的等待时间决定接下来的操作——如果永久等待将等到信号(signal)才执行下去
- dispatch_semaphore_signal():释放信号量,信号量加1。当信号量>= 0 会执行wait之后的代码
*/
dispatch_queue_t queue = dispatch_queue_create("CJL", DISPATCH_QUEUE_CONCURRENT);
for (int i = 0; i < 10; i++) {
dispatch_async(queue, ^{
NSLog(@"当前 - %d, 线程 - %@", i, [NSThread currentThread]);
});
}
//利用信号量来改写
dispatch_semaphore_t sem = dispatch_semaphore_create(0);
for (int i = 0; i < 10; i++) {
dispatch_async(queue, ^{
NSLog(@"当前 - %d, 线程 - %@", i, [NSThread currentThread]);
dispatch_semaphore_signal(sem);
});
dispatch_semaphore_wait(sem, DISPATCH_TIME_FOREVER);
}
}
dispatch_source_t
dispatch_source_t
主要用于计时操作,其原因是因为它创建的timer不依赖于RunLoop
,且计时精准度比NSTimer
高
- (void)cjl_testSource{
/*
dispatch_source
应用场景:GCDTimer
在iOS开发中一般使用NSTimer来处理定时逻辑,但NSTimer是依赖Runloop的,而Runloop可以运行在不同的模式下。如果NSTimer添加在一种模式下,当Runloop运行在其他模式下的时候,定时器就挂机了;又如果Runloop在阻塞状态,NSTimer触发时间就会推迟到下一个Runloop周期。因此NSTimer在计时上会有误差,并不是特别精确,而GCD定时器不依赖Runloop,计时精度要高很多
dispatch_source是一种基本的数据类型,可以用来监听一些底层的系统事件
- Timer Dispatch Source:定时器事件源,用来生成周期性的通知或回调
- Signal Dispatch Source:监听信号事件源,当有UNIX信号发生时会通知
- Descriptor Dispatch Source:监听文件或socket事件源,当文件或socket数据发生变化时会通知
- Process Dispatch Source:监听进程事件源,与进程相关的事件通知
- Mach port Dispatch Source:监听Mach端口事件源
- Custom Dispatch Source:监听自定义事件源
主要使用的API:
- dispatch_source_create: 创建事件源
- dispatch_source_set_event_handler: 设置数据源回调
- dispatch_source_merge_data: 设置事件源数据
- dispatch_source_get_data: 获取事件源数据
- dispatch_resume: 继续
- dispatch_suspend: 挂起
- dispatch_cancle: 取消
*/
//1.创建队列
dispatch_queue_t queue = dispatch_get_global_queue(0, 0);
//2.创建timer
dispatch_source_t timer = dispatch_source_create(DISPATCH_SOURCE_TYPE_TIMER, 0, 0, queue);
//3.设置timer首次执行时间,间隔,精确度
dispatch_source_set_timer(timer, DISPATCH_TIME_NOW, 2.0*NSEC_PER_SEC, 0.1*NSEC_PER_SEC);
//4.设置timer事件回调
dispatch_source_set_event_handler(timer, ^{
NSLog(@"GCDTimer");
});
//5.默认是挂起状态,需要手动激活
dispatch_resume(timer);
}