题目描述
给定一个二叉树 root ,返回其最大深度。
二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。
示例 1:
输入: root = [3,9,20,null,null,15,7]
输出: 3
示例 2:
输入: root = [1,null,2]
输出: 2
提示:
- 树中节点的数量在
[0, 104]区间内。 -100 <= Node.val <= 100
分析解答
二叉树的高度和深度刚好是相反的。所以当求高度的时候也求出了深度。
- 高度:后序遍历;
- 深度:前序遍历;
使用后序遍历:
var maxDepth = function(root) {
// 终止条件
if(root == null) return 0
// 递归逻辑 左右中(中体现在逻辑深度加 1 )
// 左
let leftHeight = maxDepth(root.left)
// 右
let rightHeight = maxDepth(root.right)
// 中 递归到底了 返回 1 告诉父节点 向上派发
let height = Math.max(leftHeight, rightHeight) + 1
return height
};
精简后序:
var maxDepth = function(root) {
// 终止条件
if(root == null) return 0
// 递归逻辑 左右中(中体现在逻辑深度加 1 )
return 1 + Math.max(maxDepth(root.left), maxDepth(root.right))
};
使用层序遍历:
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {number}
*/
var maxDepth = function(root) {
if(root == null) return 0
let stack = [root]
let deep = 0
while (stack.length) {
let len = stack.length
deep++
while (len) {
let node = stack.shift()
node.left && stack.push(node.left)
node.right && stack.push(node.right)
len--
}
}
return deep
};
所以,关键还是要理解各个遍历以及其使用场景。