Redis数据持久化
Redis作为一个内存数据库,数据是以内存为载体存储的,那么一旦Redis服务器进程退出,服务器中的数据也会消失。为了解决这个问题,Redis提供了持久化机制,也就是把内存中的数据保存到磁盘当中,避免数据意外丢失
Redis提供了两种持久化方案:RDB持久化和AOF持久化,一个是快照的方式,一个是类似日志追加的方式
RDB快照持久化
RDB持久化是通过快照的方式,即在指定的时间间隔内将内存中的数据集快照写入磁盘。在创建快照之后,用户可以备份该快照,可以将快照复制到其他服务器以创建相同数据的服务器副本,或者在重启服务器后恢复数据。RDB是Redis默认的持久化方式。
快照持久化
RDB持久化会生成RDB文件,该文件是一个压缩过的二进制文件,可以通过该文件还原快照时的数据库状态,即生成该RDB文件时的服务器数据。RDB文件默认为当前工作目录下的dump.rdb,可以根据配置文件中的dbfilename和dir设置RDB的文件名和文件位置。
复制代码# 设置 dump 的文件名
dbfilename dump.rdb
# 工作目录
# 例如上面的 dbfilename 只指定了文件名,
# 但是它会写入到这个目录下。这个配置项一定是个目录,而不能是文件名。
dir ./
Redis 提供了两个命令来生成 RDB 文件,分别是 save 和 bgsave,他们的区别就在于是否在「主线程」里执行:
- 执行了 save 命令,就会在主线程生成 RDB 文件,由于和执行操作命令在同一个线程,所以如果写入 RDB 文件的时间太长,会阻塞主线程;
- 执行了 bgsave 命令,会创建一个子进程来生成 RDB 文件,这样可以避免主线程的阻塞;
使用save命令会阻塞Redis服务器进程,服务器进程在RDB文件创建完成之前是不能处理任何的命令请求。
127.0.0.1:6379> save
OK
而使用bgsave命令不同的是,basave命令会fork一个子进程,然后该子进程会负责创建RDB文件,而服务器进程会继续处理命令请求。
127.0.0.1:6379> bgsave
Background saving started
fork()是由操作系统提供的函数,作用是创建当前进程的一个副本作为子进程
fork一个子进程,子进程会把数据集先写入临时文件,写入成功之后,再替换之前的RDB文件,用二进制压缩存储,这样可以保证RDB文件始终存储的是完整的持久化内容
RDB 文件的加载工作是在服务器启动时自动执行的,Redis 并没有提供专门用于加载 RDB 文件的命令。
Redis 还可以通过配置文件的选项来实现每隔一段时间自动执行一次 bgsave 命令,默认会提供以下配置:
save 900 1
save 300 10
save 60 10000
别看选项名叫 save,实际上执行的是 bgsave 命令,也就是会创建子进程来生成 RDB 快照文件。
只要满足上面条件的任意一个,就会执行 bgsave,它们的意思分别是:
- 900 秒之内,对数据库进行了至少 1 次修改;
- 300 秒之内,对数据库进行了至少 10 次修改;
- 60 秒之内,对数据库进行了至少 10000 次修改。
AOF持久化
AOF持久化会把被执行的写命令写到AOF文件的末尾,记录数据的变化。
这种保存写操作命令到日志的持久化方式,就是 Redis 里的 AOF( Append Only File ) 持久化功能,注意只会记录写操作命令,读操作命令是不会被记录的,因为没意义。
在 Redis 中 AOF 持久化功能默认是不开启的,需要我们修改 redis.conf 配置文件中的以下参数:
AOF 日志文件其实就是普通的文本,我们可以通过 cat 命令查看里面的内容,不过里面的内容如果不知道一定的规则的话,可能会看不懂。
我这里以「set name xiaolin」命令作为例子,Redis 执行了这条命令后,记录在 AOF 日志里的内容如下图:
我这里给大家解释下。
「*3」表示当前命令有三个部分,每部分都是以「3 set」表示这部分有 3 个字节,也就是「set」命令这个字符串的长度。
不知道大家注意到没有,Redis 是先执行写操作命令后,才将该命令记录到 AOF 日志里的,这么做其实有两个好处。
第一个好处,避免额外的检查开销。
因为如果先将写操作命令记录到 AOF 日志里,再执行该命令的话,如果当前的命令语法有问题,那么如果不进行命令语法检查,该错误的命令记录到 AOF 日志里后,Redis 在使用日志恢复数据时,就可能会出错。
而如果先执行写操作命令再记录日志的话,只有在该命令执行成功后,才将命令记录到 AOF 日志里,这样就不用额外的检查开销,保证记录在 AOF 日志里的命令都是可执行并且正确的。
第二个好处,不会阻塞当前写操作命令的执行,因为当写操作命令执行成功后,才会将命令记录到 AOF 日志。
当然,AOF 持久化功能也不是没有潜在风险。
第一个风险,执行写操作命令和记录日志是两个过程,那当 Redis 在还没来得及将命令写入到硬盘时,服务器发生宕机了,这个数据就会有丢失的风险。
第二个风险,前面说道,由于写操作命令执行成功后才记录到 AOF 日志,所以不会阻塞当前写操作命令的执行,但是可能会给「下一个」命令带来阻塞风险。
因为将命令写入到日志的这个操作也是在主进程完成的(执行命令也是在主进程),也就是说这两个操作是同步的。
如果在将日志内容写入到硬盘时,服务器的硬盘的 I/O 压力太大,就会导致写硬盘的速度很慢,进而阻塞住了,也就会导致后续的命令无法执行。
认真分析一下,其实这两个风险都有一个共性,都跟「 AOF 日志写回硬盘的时机」有关。
三种写回策略
Redis 写入 AOF 日志的过程,如下图:
我先来具体说说:
- Redis 执行完写操作命令后,会将命令追加到 server.aof_buf 缓冲区;
- 然后通过 write() 系统调用,将 aof_buf 缓冲区的数据写入到 AOF 文件,此时数据并没有写入到硬盘,而是拷贝到了内核缓冲区 page cache,等待内核将数据写入硬盘;
- 具体内核缓冲区的数据什么时候写入到硬盘,由内核决定。
Redis 提供了 3 种写回硬盘的策略,控制的就是上面说的第三步的过程。
在 redis.conf 配置文件中的 appendfsync 配置项可以有以下 3 种参数可填:
- Always,这个单词的意思是「总是」,所以它的意思是每次写操作命令执行完后,同步将 AOF 日志数据写回硬盘;
- Everysec,这个单词的意思是「每秒」,所以它的意思是每次写操作命令执行完后,先将命令写入到 AOF 文件的内核缓冲区,然后每隔一秒将缓冲区里的内容写回到硬盘;
- No,意味着不由 Redis 控制写回硬盘的时机,转交给操作系统控制写回的时机,也就是每次写操作命令执行完后,先将命令写入到 AOF 文件的内核缓冲区,再由操作系统决定何时将缓冲区内容写回硬盘。
这 3 种写回策略都无法能完美解决「主进程阻塞」和「减少数据丢失」的问题,因为两个问题是对立的,偏向于一边的话,就会要牺牲另外一边,原因如下:
- Always 策略的话,可以最大程度保证数据不丢失,但是由于它每执行一条写操作命令就同步将 AOF 内容写回硬盘,所以是不可避免会影响主进程的性能;
- No 策略的话,是交由操作系统来决定何时将 AOF 日志内容写回硬盘,相比于 Always 策略性能较好,但是操作系统写回硬盘的时机是不可预知的,如果 AOF 日志内容没有写回硬盘,一旦服务器宕机,就会丢失不定数量的数据。
- Everysec 策略的话,是折中的一种方式,避免了 Always 策略的性能开销,也比 No 策略更能避免数据丢失,当然如果上一秒的写操作命令日志没有写回到硬盘,发生了宕机,这一秒内的数据自然也会丢失。
大家根据自己的业务场景进行选择:
- 如果要高性能,就选择 No 策略;
- 如果要高可靠,就选择 Always 策略;
- 如果允许数据丢失一点,但又想性能高,就选择 Everysec 策略。
我也把这 3 个写回策略的优缺点总结成了一张表格:
大家知道这三种策略是怎么实现的吗?
深入到源码后,你就会发现这三种策略只是在控制 fsync() 函数的调用时机。
当应用程序向文件写入数据时,内核通常先将数据复制到内核缓冲区中,然后排入队列,然后由内核决定何时写入硬盘。
如果想要应用程序向文件写入数据后,能立马将数据同步到硬盘,就可以调用 fsync() 函数,这样内核就会将内核缓冲区的数据直接写入到硬盘,等到硬盘写操作完成后,该函数才会返回。
- Always 策略就是每次写入 AOF 文件数据后,就执行 fsync() 函数;
- Everysec 策略就会创建一个异步任务来执行 fsync() 函数;
- No 策略就是永不执行 fsync() 函数;
AOF的重写机制
AOF 日志是一个文件,随着执行的写操作命令越来越多,文件的大小会越来越大。
如果当 AOF 日志文件过大就会带来性能问题,比如重启 Redis 后,需要读 AOF 文件的内容以恢复数据,如果文件过大,整个恢复的过程就会很慢。
所以,Redis 为了避免 AOF 文件越写越大,提供了 AOF 重写机制,当 AOF 文件的大小超过所设定的阈值(默认是64MB)后,Redis 就会启用 AOF 重写机制,来压缩 AOF 文件。
AOF 重写机制是在重写时,读取当前数据库中的所有键值对,然后将每一个键值对用一条命令记录到「新的 AOF 文件」,等到全部记录完后,就将新的 AOF 文件替换掉现有的 AOF 文件。
举个例子,在没有使用重写机制前,假设前后执行了「set name xiaolin」和「set name xiaolincoding」这两个命令的话,就会将这两个命令记录到 AOF 文件。
但是在使用重写机制后,就会读取 name 最新的 value(键值对) ,然后用一条 「set name xiaolincoding」命令记录到新的 AOF 文件,之前的第一个命令就没有必要记录了,因为它属于「历史」命令,没有作用了。这样一来,一个键值对在重写日志中只用一条命令就行了。
重写工作完成后,就会将新的 AOF 文件覆盖现有的 AOF 文件,这就相当于压缩了 AOF 文件,使得 AOF 文件体积变小了。
然后,在通过 AOF 日志恢复数据时,只用执行这条命令,就可以直接完成这个键值对的写入了。
所以,重写机制的妙处在于,尽管某个键值对被多条写命令反复修改,最终也只需要根据这个「键值对」当前的最新状态,然后用一条命令去记录键值对,代替之前记录这个键值对的多条命令,这样就减少了 AOF 文件中的命令数量。最后在重写工作完成后,将新的 AOF 文件覆盖现有的 AOF 文件。
这里说一下为什么重写 AOF 的时候,不直接复用现有的 AOF 文件,而是先写到新的 AOF 文件再覆盖过去。
因为如果 AOF 重写过程中失败了,现有的 AOF 文件就会造成污染,可能无法用于恢复使用。
所以 AOF 重写过程,先重写到新的 AOF 文件,重写失败的话,就直接删除这个文件就好,不会对现有的 AOF 文件造成影响。
AOF的后台重写
Redis的混合持久化
RDB 优点是数据恢复速度快,但是快照的频率不好把握。频率太低,丢失的数据就会比较多,频率太高,就会影响性能。
AOF 优点是丢失数据少,但是数据恢复不快。
为了集成了两者的优点, Redis 4.0 提出了混合使用 AOF 日志和内存快照,也叫混合持久化,既保证了 Redis 重启速度,又降低数据丢失风险。
混合持久化工作在 AOF 日志重写过程,当开启了混合持久化时,在 AOF 重写日志时,fork 出来的重写子进程会先将与主线程共享的内存数据以 RDB 方式写入到 AOF 文件,然后主线程处理的操作命令会被记录在重写缓冲区里,重写缓冲区里的增量命令会以 AOF 方式写入到 AOF 文件,写入完成后通知主进程将新的含有 RDB 格式和 AOF 格式的 AOF 文件替换旧的的 AOF 文件。
也就是说,使用了混合持久化,AOF 文件的前半部分是 RDB 格式的全量数据,后半部分是 AOF 格式的增量数据。
这样的好处在于,重启 Redis 加载数据的时候,由于前半部分是 RDB 内容,这样加载的时候速度会很快。
加载完 RDB 的内容后,才会加载后半部分的 AOF 内容,这里的内容是 Redis 后台子进程重写 AOF 期间,主线程处理的操作命令,可以使得数据更少的丢失。
混合持久化优点:
- 混合持久化结合了 RDB 和 AOF 持久化的优点,开头为 RDB 的格式,使得 Redis 可以更快的启动,同时结合 AOF 的优点,有减低了大量数据丢失的风险。
混合持久化缺点:
- AOF 文件中添加了 RDB 格式的内容,使得 AOF 文件的可读性变得很差;
- 兼容性差,如果开启混合持久化,那么此混合持久化 AOF 文件,就不能用在 Redis 4.0 之前版本了。
Redis混合使用