你知道什么情况下适合创建索引吗

143 阅读12分钟

你知道什么情况下适合创建索引吗

1. 字段的数值有唯一性的限制

索引本身可以起到约束的作用,比如唯一索引、主键索引都可以起到唯一性约束的,因此在我们的数据表中,如果某个字段是唯一的,就可以直接创建唯一性索引,或者主键索引。这样可以更快速地通过该索引来确定某条记录。

例如,学生表中学号是具有唯一性的字段,为该字段建立唯一性索引可以很快确定某个学生的信息,如果使用姓名的话,可能存在同名现象,从而降低查询速度。

业务上具有唯一特性的字段,即使是组合字段,也必须建成唯一索引。(来源:Alibaba)

说明:不要以为唯一索引影响了insert速度,这个速度损耗可以忽略,但提高查找速度是明显的。

2. 频繁作为 WHERE 查询条件的字段

某个字段在SELECT语句的 WHERE 条件中经常被使用到,那么就需要给这个字段创建索引了。尤其是在数据量大的情况下,创建普通索引就可以大幅提升数据查询的效率。

比如student_info数据表(含100万条数据),假设我们想要查询 student_id=123110 的用户信息。

如果我们没有对student_id字段创建索引,进行如下查询:

SELECT
	course_id, class_id, `name`, create_time, student_id 
FROM
	student_info 
WHERE
	student_id = 123110;

运行结果

image-20220601163857058

运行时间为0.20s,当我们对student_id字段创建索引之后,运行时间为0.01s,原来查询时间的1/20,效率提升还是明显的。

image-20220601163934304

3. 经常 GROUP BY 和 ORDER BY 的列

索引就是让数据按照某种顺序进行存储或检索,因此当我们使用 GROUP BY 对数据进行分组查询,或者使用 ORDER BY 对数据进行排序的时候,就需要对分组或者排序的字段进行索引。如果待排序的列有多个,那么可以在这些列上建立组合索引

比如,按照student_id对学生选修的课程进行分组,显示不同的student_id和课程数量,显示100个即可。 如果我们不对student_id创建索引,执行下面的SQL语句:

SELECT student_id, count( *) as num FROM student_info group by student_id limit 100;

运行结果(100条记录,运行时间0.56s ) :

image-20220601164443822

如果我们对student_id创建索引,再执行SQL语句。结果如下:

image-20220601164519089

运行结果(100条记录,运行时间0.00s ),效率提升很明显。而且,得到的结果中student_id字段的数值也是 按照顺序展示 的。

同样,如果是ORDER BY,也需要对字段创建索引。

如果同时有GROUP BY和ORDER BY的情况:比如我们按照student_id进行分组,同时按照创建时间降序的方式进行排序,这时我们就需要同时进行GROUP BY和ORDER BY,那么是不是需要单独创建student_id的索引和create_time的索引呢? 当我们对student_id和create_time 分别创建索引 ,执行下面的SQL查询:

SELECT student_id, count( * ) as num 
FROM student_info 
group by student_id
order by create_time desc
limit 100;

运行结果

image-20220601170139470

image-20220601170203746

说明:多个单列索引在多条件查询时 只会生效一个索引(MySQL会选择其中一个限制最严格的作为索引),所以在多条件联合查询的时候 最好创建联合索引。接着,我们创建联合索引(student_id, create_time),查询时间为0.22s,效率提升了很多。

image-20220601170319096

image-20220601170351984

如果我们创建联合索引的顺序为(create_time, student_id)呢?运行时间为2.164s,因为在进行SELECT查询的时候,先进行GROUP BY,再对数据进行ORDER BY的操作,所以按照(student_id, create_time)这个联合索引的顺序效率是最高的。

4. UPDATE、DELETE 的 WHERE 条件列

当我们对某条数据进行 UPDATE 或者 DELETE 操作的时候,是否也需要对WHERE的条件列创建索引呢?

我们先看一下对数据进行UPDATE的情况:我们想要把name为462eed7ac6e791292a79对应的student_id修改为10002,当我们没有对name进行索引的时候,执行SQL语句:

UPDATE student_info SET student_id = 18802WHERE name = '462eed7ac6e791292a79'

运行结果为Affected rows: 1,运行时间为 0.578s

你能看到效率不高,但如果我们对name 字段创建了索引,然后执行类似的SQL语句:

UPDATE student_info SET student_id = 10001
WHERE name = '462eed7ac6e791292a79'

运行结果为Affected rows:1,运行时间仅为 0.001s 。效率有了大幅的提升。如果我们对某条数据进行DELETE,效率如何呢?

比如我们想删除name为46teed7ac6e791292a79的数据。当我们没有对name字段进行索引的时候,执行SQL语句:

DELETE FROM student_info WHERE name = '462eed7ac6e791292a79';

运行结果为Affected rows: 1,运行时间为 0.627s,效率不高。

如果我们对name创建了索引,再来执行这条sQL语句,运行时间为0.03s,效率有了大幅的提升。

对数据按照某个条件进行查询后再进行 UPDATE 或 DELETE 的操作,如果对 WHERE 字段创建了索引,就能大幅提升效率。原理是因为我们需要先根据 WHERE 条件列检索出来这条记录,然后再对它进行更新或删除。如果进行更新的时候,更新的字段是非索引字段,提升的效率会更明显,这是因为非索引字段更新不需要对索引进行维护。

5.DISTINCT 字段需要创建索引

有时候我们需要对某个字段进行去重,使用 DISTINCT,那么对这个字段创建索引,也会提升查询效率。 比如,我们想要查询课程表中不同的 student_id 都有哪些,如果我们没有对 student_id 创建索引,执行SQL 语句:

SELECT DISTINCT(student_id) FROM `student_info`;

运行结果(600637 条记录,运行时间 0.683s ): 如果我们对 student_id 创建索引,再执行 SQL 语句:

SELECT DISTINCT(student_id) FROM `student_info`;

运行结果(600637 条记录,运行时间 0.010s

你能看到 SQL 查询效率有了提升,同时显示出来的 student_id 还是按照 递增的顺序 进行展示的。这是因为索引会对数据按照某种顺序进行排序,所以在去重的时候也会快很多。

6. 多表 JOIN 连接操作时,创建索引注意事项

首先,连接表的数量尽量不要超过 3 张,因为每增加一张表就相当于增加了一次嵌套的循环,数量级增长会非常快,严重影响查询的效率。

其次,对 WHERE 条件创建索引,因为 WHERE 才是对数据条件的过滤。如果在数据量非常大的情况下,没有 WHERE 条件过滤是非常可怕的。

最后,对用于连接的字段创建索引,并且该字段在多张表中的类型必须一致。比如 course_id 在student_info 表和 course 表中都为 int(11) 类型,而不能一个为 int 另一个为 varchar 类型。

举个例子,如果我们只对 student_id 创建索引,执行 SQL 语句:

SELECT s.course_id, name, student_info.student_id, course_name
FROM student_info s JOIN course
ON student_info.course_id = course.course_id
WHERE name = '462eed7ac6e791292a79';

运行结果(1 条数据,运行时间 0.189s ): 这里我们对 name 创建索引,再执行上面的 SQL 语句,运行时间为 0.002s 。

7. 使用列的类型小的创建索引

我们这里所说的类型大小指的就是该类型表示的数据范围的大小。

我们在定义表结构的时候要显式的指定列的类型,以整数类型为例,有TINYINTMEDIUNINTINTBIGINT等,它们占用的存储空间依次递增,能表示的整数范围当然也是依次递增。如果我们想要对某个整数列建立索引的话,在表示的整数范围允许的情况下,尽量让索引列使用较小的类型,比如我们能使用INT就不要使用BIGINT,能使用MEDIUMINT就不要使用INT。这是因为:

  • 数据类型越小,在查询时进行的比较操作越快
  • 数据类型越小,索引占用的存储空间就越少,在一个数据页内就可以放下更多的记录,从而减少磁盘I/O带来的性能损耗,也就意味着可以把更多的数据页缓存在内存中,从而加快读写效率。

这个建议对于表的主键来说更加适用,因为不仅是聚簇索引中会存储主键值,其他所有的二级索引的节点处都会存储一份记录的主键值,如果主键使用更小的数据类型,也就意味着节省更多的存储空间和更高效的I/O。

8. 使用字符串前缀创建索引

假设我们的字符串很长,那存储一个字符串就需要占用很大的存储空间。在我们需要为这个字符串列建立索引时,那就意味着在对应的B+树中有这么两个问题:

  • B+树索引中的记录需要把该列的完整字符串存储起来,更费时。而且字符串越长,在索引中占用的存储空间越大
  • 如果B+树索引中索引列存储的字符串很长,那在做字符串比较时会占用更多的时间。

我们可以通过截取字段的前面一部分内容建立索引,这个就叫 前缀索引。这样在查找记录时虽然不能精确的定位到记录的位置,但是能定位到相应前缀所在的位置,然后根据前缀相同的记录的主键值回表查询完整的字符串值。既 节约空间,又 减少了字符串的比较时间,还大体能解决排序的问题。

例如,TEXT和BLOG类型的字段,进行全文检索会很浪费时间,如果只检索字段前面的若干字符,这样可以提高检索速度。

创建一张商户表,因为地址字段比较长,在地址字段上建立前缀索引

create table shop(address varchar(120) not null);
alter table shop add index(address(12));

问题是,截取多少呢?截取得多了,达不到节省索引存储空间的目的;截取得少了,重复内容太多,字段的散列度(选择性)会降低。怎么计算不同的长度的选择性呢?

先看一下字段在全部数据中的选择度:

select count(distinct address) / count(*) from shop;

通过不同长度去计算,与全表的选择性对比:

公式:

count(distinct left(列名, 索引长度))/count(*)

例如:

select count(distinct left(address,10)) / count(*) as sub10, -- 截取前10个字符的选择度
count(distinct left(address,15)) / count(*) as sub11, -- 截取前15个字符的选择度
count(distinct left(address,20)) / count(*) as sub12, -- 截取前20个字符的选择度
count(distinct left(address,25)) / count(*) as sub13 -- 截取前25个字符的选择度
from shop;

引申另一个问题:索引列前缀对排序的影响

如果使用了索引列前缀,比方说前边只把address列的 前12个字符 放到了二级索引中,下边这个查询可能就有点儿尴尬了:

SELECT * FROM shop 
ORDER BY address 
LIMIT 12;

因为二级索引中不包含完整的address列信息,所以无法对前12个字符相同,后边的字符不同的记录进行排序,也就是使用索引列前缀的方式无法支持使用索引排序 ,只能使用文件排序。

拓展:Alibaba《Java开发手册》

强制】在 varchar 字段上建立索引时,必须指定索引长度,没必要对全字段建立索引,根据实际文本区分度决定索引长度。

说明:索引的长度与区分度是一对矛盾体,一般对字符串类型数据,长度为 20 的索引,区分度会高达 90% 以上,可以使用 count(distinct left(列名, 索引长度))/count(*)的区分度来确定。

9. 区分度高(散列性高)的列适合作为索引

列的基数指的是某一列中不重复数据的个数,比方说某个列包含值2,5,8,2,5,8,2,5,8,虽然有9条记录,但该列的基数却是3。也就是说,**在记录行数一定的情况下,列的基数越大,该列中的值越分散;列的基数越小,该列中的值越集中。**这个列的基数指标非常重要,直接影响我们是否能有效的利用索引。最好为列的基数大的列建立索引,为基数太小的列建立索引效果可能不好。

可以使用公式select count(distinct a)/count(*) from t1计算区分度,越接近1越好,一般超过33%就算是比较高效的索引了。

拓展:联合索引把区分度高(散列性高)的列放在前面。

10. 使用最频繁的列放到联合索引的左侧

这样也可以较少的建立一些索引。同时,由于"最左前缀原则",可以增加联合索引的使用率。

11. 在多个字段都要创建索引的情况下,联合索引优于单值索引