CHC6186 Advanced Object-Oriented

132 阅读9分钟

CHC6186 Advanced Object-Oriented Programming
Coursework
For this coursework, you will produce in Java two versions of the game Numberle. One version will
have a Graphical User Interface (GUI) and the other version will have a command-line interface (CLI).
The GUI version will be constructed according to the principles of Model View Controller, and the CLI
version will use the same model. The two versions will from now on be called the GUI version and
the CLI version.
Learning Outcomes
This coursework will assess the following learning outcomes.
● Create a software artefact by applying the methodologies of advanced object-oriented
programming to a requirements specification
● Consult on-line code libraries to find the classes and methods most appropriate for solving a
problem
● Create appropriate documentation that clearly communicates the intended behaviour of a
program
This coursework is worth 50% of your module mark; the remaining 50% comes from your exam.
How to Play Numberle
Numberle is a mathematical equation guessing game where players must accurately guess a randomly
generated equation within six tries.1 Players enter their own equation, aiming to match the target
equation. In total, players have 6 attempts to guess the target equation. When calculating, players
can use numbers (0-9) and arithmetic signs (+ - * / =).
For this coursework, the length of the mathematical equation is fixed at 7 characters. (However, the
character number of the link numberle.org is originally 8, but you can change it to 7 characters by
clicking the top left setting button) In each attempt, the player enters their own correct equation to
find out what numbers and arithmetic signs are in the equation. If the number or sign is in the
equation, but in the wrong place, it will be highlighted in orange. If it is in the exact place, then it will
be highlighted in green. 代 写CHC6186 Advanced Object-Oriented If there is no number or sign in the equation at all, the color will be gray. In
this coursework, arithmetic expressions are
evaluated using BODMAS. BODMAS stands for
"Brackets, Orders (exponents), Division and
Multiplication, Addition and Subtraction." This
means that operations within brackets are
performed first, followed by any exponents, then
division and multiplication (from left to right), and
finally addition and subtraction (from left to right).
The website is implemented in Javascript. Any
attempt to submit Javascript will receive a mark
of zero and any Java based on the website’s
Javascript will be treated as plagiarism in the
normal way. The website colours may be used.
1
numberle.org
Functional Requirements
For greater clarity, the description of the GUI and the CLI versions of the game can be summarised in
the following list of functional requirements.
FR1 For the GUI version, a confirmatory message or a message box should be displayed to
indicate whether the player has won (guessed the mathematical equation) or lost (run out
of guesses), even though the game status is clear from the tile coloring on the last filled
row.
FR2 For the CLI version, a confirmatory message indicating the player has won or lost is
required.
FR3 The behaviour of the program shall be controlled by three flags:
• One flag should, if set, cause an error message to be displayed if the equation is not
valid; this will not then count as one of the tries.
• Another flag should, if set, display the target equation for testing purposes.
• A third flag should, if set, cause the equation to be randomly selected. If unset, the
equation will be fixed.
FR4 Both GUI and CLI versions of the program should allow players to input their guesses for
the mathematical equation, consisting of numbers and arithmetic signs.
FR5 The Model should load a list of valid equations from a fixed location (from one provided
file equations.txt). This list will serve as potential guesses for the player.
FR6 The GUI should display a keyboard in which digits or signs are displayed in dark grey if it
has been revealed that they do not occur in the mathematical equation, green if a correct
location of a digit or a sign has been found, and orange if the digit or sign has been
guessed but never at the correct location. See below for an example; this functionality is
like the GUI shown on the website.
The CLI should indicate available digits or signs by listing them in four separate categories
in a certain order.
FR7 The GUI version should have a button to ask for a new game which will be enabled only
after the first valid guess has been made. This is not required for the CLI version.
Non-functional Requirements
The following non-functional requirements also apply
NFR1 The GUI version and CLI version should be two separate programs ie there should be two
files each with a main method in them and which file is run determines which version
activated.
NFR2 The GUI version must be constructed according to the principles of MVC, as restated
below. Because of this requirement, code that belongs in the View but is placed in the
Model will usually not be counted towards the marks for the View. Similar rules will apply
for other misplaced code.
NFR3 The CLI version will use the Model part of the GUI version directly without using the View
or Controller; nor should it define a new view or controller.
NFR4 The code must be documented with asserts, unit testing, class diagram, comments as
described below.
NFR5 The code must be of good quality as described in the marking scheme below.
NFR6 The flags mentioned in FR3 should be in the Model. It is not necessary for them to be
changeable at run time.
NFR7 The model should also have a constant indicating the number of allowable guesses.
Marking Scheme (See rubric as well).
Model. This should have an interface designed to be convenient for the Controller, View
and JUnit class to use with no superfluous public methods, no references to two classes
and contain no GUI code. It may consist of several classes but there must be a class called
Model or similar that provides the interface and this class should extend Observable. File
reading should also be done in the Model. A high mark will be earned for a Model that
implements all the required functionality and respects all these constraints. A pass mark
will be earned for a Model that implements only some of the required functionality or fails
to respect these constraints.
20%
Controller. This should forward only valid requests to the Model, querying the Model if
necessary to find out if the request is valid, and must also enable / disable buttons as
described above in the functional requirements. It must have no GUI code, though it may
send messages to the View. A high mark will be given to a controller that respects all these
constraints and a pass mark will be given to a controller that respects only some of them
10%
View of GUI version using the Swing framework. It should implement Observer and
therefore have an update method that is called when the Model changes. This will be
marked according to how many of the functional requirements have been met. A high
mark will be given to a view that implements all the requirements and a pass mark will be
given to a view that implements only some of them.
10%
CLI version of the program, using the Model. 10%
Specification of Model with asserts. This should include invariants for the class as well as
pre and post conditions for each public method in the model. This will be marked
according to how many of the relevant conditions are included and whether the ones that
are included are correct. Partial credit will be available for describing them in English. A
high mark will be given to a specification that includes all the relevant constraints. A pass
mark will be given to a specification that includes only a few of them.
10%
Unit testing of the Model in JUnit. There should be three tests, significantly different from
each other. You should explain in comments the scenario ie the situation you are testing
for. You should use write (and then call) methods for the Model that set it into the state
desired for the test. It should be easy to see what state the Model is being set to by
reading the code for the unit tests. A high mark will be given to significantly different tests
10%
that are easy for the marker to interpret. A pass mark will be given to unoriginal second or
third tests or to three tests that are difficult to understand. Your Model may use a
separate Board class but the testing should be of the Model class and the specification
should be applied to that class also.
Use of the code quality practices described in Lecture 1, plus the additional practices of
light relevant commenting and correct formatting. Short elegant programs are preferred,
and code smells are to be avoided. Note that high marks for this category will only be
possible if the GUI fulfils most of the requirements. A high mark will be awarded if all the
practices are observed and a pass mark will be awarded if only some of them are.
10%
Class diagram. This should show how the Model, View and Controller are related to each
other, as well as how they interact with library classes such as Observable. Simplicity and
clarity will be reward. It will be marked according to its accuracy as a representation of the
program. A high mark will be awarded for an accurate diagram and a pass mark will be
awarded for a less accurate diagram.
10%
Video presentation that shows you displaying the code and using the program. It will be
marked according to timing, presentation and how well you show that you have met the
FRs and NFRs in both versions.
10%
Submission
Requirements

  1. Your submission should contain three files (.pdf, .zip, and .mp4).
  2. The first file is a .pdf document with screenshots of the implementation (Java code), testing,
    and design with a class diagram.
  3. The second file is a .zip file with the Java project.
  4. The third file is a .mp4 video that is less than 1 GB. If the video is not viewable, it will not
    receive marks. The video must be a maximum of five minutes long during which you must
    display most of the relevant functionality and refer to your code. Any recording software can
    be used so long as it captures your screen and your voice.
  5. Additionally, you are required to regularly upload your code to GitHub as per the university
    counterpart's requirement. Provide the GitHub repository link in the PDF document.
  6. The PDF document is the version that will be marked, but the .zip and .mp4 are requested so
    that we may run the code.
    File Naming Convention
    You must save the files with the following names:
    • {YourStudentNumber}-coursework.pdf
    • {YourStudentNumber}-coursework.zip
    • {YourStudentNumber}-coursework.mp4
    For example:
    • 202007081314-coursework.pdf
    • 202007081314-coursework.zip
    • 202107081314-coursework.mp4
    Submission Deadline:
    You must upload from the student website (student.zy.cdut.edu.cn) before 17:00, May 6th
    (Monday).
    Some students will be selected to give a Zoom presentation, after the exam period. If you are asked
    to give a Zoom presentation then you must do so.
    Formative Feedback
    We are giving you the opportunity to receive feedback on the design of your program. To receive
    this feedback, you need to upload a detailed UML class diagram of your code to student website
    before 17:00 on Friday March 25th. As this is a formative feedback deadline, it will not be possible
    for you to seek deadline extensions. You will be given a short amount of written feedback on your
    design within a week. The Week 5 teaching session will go through a worked example in order to
    help you produce the class diagram.
    The class diagram should have all methods and attributes showing. In addition, you should indicate
    which methods call which other methods. A class diagram with insufficient detail or syntactically
    nonsensical or not realisable as an actual Java program will make it more difficult for us to give you
    feedback and will receive a low mark if submitted with the final report.
    Academic Conduct
    This is an individual piece of work and you will have to work on your own and submit your own
    original attempt at the assignment. Any code that has been copied from any source (e.g. Stack
    Overflow, online tutorial, textbooks, other students etc.) must be properly referenced to avoid any
    suspicion of plagiarism. Refer to the Module Handbook for further information on this. If you need
    help you can always ask for advice and guidance from the module leader by email; online sessions
    can be arranged for further clarification.
    Rubric The work shall be marked according to the following rubric.
    D C B A
    Model only basic functionality
    implemented or slightly more
    than basic but references to View
    or Controller or superfluous
    methods
    no superfluous methods and no
    references to View or Controller
    but only the basics of
    functionality implemented
    no superfluous methods and
    no references to View or
    Controller but only the basics
    of functionality implemented
    convenient to use with no superfluous methods, all required
    functionality and no references to View or Controller, extends
    Observable, calls setChanged and notifyObservers
    Controller zero of the requirements: only
    valid requests, querying Model
    first, enables/disables buttons
    without GUI code
    one out of only valid requests,
    querying Model first,
    enables/disables buttons without
    GUI code
    two out of only valid requests,
    querying Model first,
    enables/disables buttons
    without GUI code
    only valid requests, has references to both Model and View,
    converting UI interactions into methods to change the Model,
    querying Model first, enables/disables buttons without GUI code
    GUI View no view update method or
    update method implementing
    very few of the FRs
    update method in view
    implementing some of the FRs
    update method in view
    implementing most of the FRs
    update method in view implementing all the FRs, uses Swing, has
    Model and Controller as attributes, displays board and allows
    Controller to change the view e.g. enable/disable options,
    implements Observer and calls addObserver
    CLI class CLI version implementing very
    few of the FRs
    CLI version implementing some of
    the FRs
    CLI version implementing
    most of the FRs
    CLI version implementing all the FRs, using same Model as the
    GUI version, but no Controller and is demonstrated on the video
    Specification
    of
    Model with
    asserts
    a few pre/postconditions
    described in English
    suitable pre/post conditions for
    most public methods but in
    English
    suitable pre/post conditions
    for most public
    methods expressed in some
    logic
    suitable pre/post conditions for all public methods and class
    invariants all expressed as statements of formal logic
    Unit testing
    of
    Model with
    JUnit
    one test with the scenario poorly
    described or not at all
    tests all essentially similar or only
    one or two or scenario being
    tested poorly described
    third test not significantly
    different or scenario being
    tested not described with
    sufficient care
    three significantly different tests of the model with all scenarios
    exactly described and with all inputs satisfying the preconditions
    Code quality
    practices
    most code quality practices not
    observed
    some code quality practices
    observed but many not
    most code quality practices
    observed but some clearly not
    all code quality practices observed including light correct
    commenting, suitable identifier names (constants, methods,
    classes etc) in appropriate cases, indentation, lack of code
    smells (long methods, repeated code, lack of modularity)
    Class
    diagram
    Inadequate class diagram with
    serious mistakes in attributes and
    relationships between classes
    Adequate class diagram with
    mistakes in both attributes and
    relationships between classes
    Good class diagram with only
    a few mistakes in attributes,
    visibility or relationships
    between classes
    Excellent class diagram with all attributes indicated with correct
    visibilities and correct relationships between classes all shown
    Video
    Presentation
    Very poor presentation with
    insufficient coverage of FRs and
    NFRs, poorly presented and
    overly long
    Passable presentation covering
    FRs or NFRs or well-presented or
    at least appropriate lengthQuite good presentation butmissing some details of FRsand NFRs or poorly presentedor overly longExcellent presentation with full explanation of most FRs andNFRs, 
    WX:codinghelp