基于PSO优化的CNN-LSTM-Attention的时间序列回归预测matlab仿真

63 阅读4分钟

1.算法运行效果图预览

PSO优化前:

image.png

  image.png

PSO优化后:

 

image.png   image.png

2.算法运行软件版本

MATLAB2022A

 

 

3.算法理论概述

        时间序列回归预测是数据分析的重要领域,旨在根据历史数据预测未来时刻的数值。近年来,深度学习模型如卷积神经网络(Convolutional Neural Network, CNN)、长短时记忆网络(Long Short-Term Memory, LSTM)以及注意力机制(Attention Mechanism)在时间序列预测中展现出显著优势。然而,模型参数的有效设置对预测性能至关重要。粒子群优化(PSO)作为一种高效的全局优化算法,被引入用于优化深度学习模型的超参数。

 

        粒子群优化(PSO)是一种基于群体智能的全局优化算法。每个粒子代表一个可能的解决方案(即模型超参数组合),通过迭代更新粒子的速度和位置,寻找最优解。对于超参数优化问题,粒子位置Pi​表示模型超参数,速度Vi​表示超参数调整方向和幅度。

 

3.1卷积神经网络(CNN)在时间序列中的应用

        在时间序列数据中,CNN用于提取局部特征和模式。对于一个长度为T的时间序列数据X = [x_1, x_2, ..., x_T],通过卷积层可以生成一组特征映射:

 

image.png

 

       CNN通过多个卷积层和池化层的堆叠来提取输入数据的特征。每个卷积层都包含多个卷积核,用于捕捉不同的特征。池化层则用于降低数据的维度,减少计算量并增强模型的鲁棒性。

 

3.2 长短时记忆网络(LSTM)处理序列依赖关系

       LSTM单元能够有效捕捉时间序列中的长期依赖关系。在一个时间步t,LSTM的内部状态h_t和隐藏状态c_t更新如下:

 

image.png

 

       长短时记忆网络是一种特殊的循环神经网络(RNN),设计用于解决长序列依赖问题。在时间序列预测中,LSTM能够有效地捕捉时间序列中的长期依赖关系。

 

3.3 注意力机制(Attention)

         注意力机制是一种让模型能够自动地关注输入数据中重要部分的技术。在时间序列预测中,注意力机制可以帮助模型关注与当前预测最相关的历史信息。

 

       CNN-LSTM-Attention模型结合了CNN、LSTM和Attention三种技术的优势。首先,使用CNN提取时间序列中的局部特征;然后,将提取的特征输入到LSTM中,捕捉时间序列中的长期依赖关系;最后,通过注意力机制对LSTM的输出进行加权,使模型能够关注与当前预测最相关的历史信息。具体来说,模型的流程如下:

image.png  

4.部分核心程序 `for i=1:Iter

    i

    for j=1:Npeop

        rng(i+j)

        if func_obj(x1(j,:))<pbest1(j)

           p1(j,:)   = x1(j,:);%变量

           pbest1(j) = func_obj(x1(j,:));

        end

        if pbest1(j)<gbest1

           g1     = p1(j,:);%变量

           gbest1 = pbest1(j);

        end

       

        v1(j,:) = 0.8v1(j,:)+c1rand*(p1(j,:)-x1(j,:))+c2rand(g1-x1(j,:));

        x1(j,:) = x1(j,:)+v1(j,:);

        

        for k=1:dims

            if x1(j,k) >= tmps(2,k)

               x1(j,k) = tmps(2,k);

            end

            if x1(j,k) <= tmps(1,k)

               x1(j,k) = tmps(1,k);

            end

        end

 

        for k=1:dims

            if v1(j,k) >= tmps(2,k)/2

               v1(j,k) =  tmps(2,k)/2;

            end

            if v1(j,k) <= tmps(1,k)/2

               v1(j,k) =  tmps(1,k)/2;

            end

        end

 

    end

    gb1(i)=gbest1

end

 

figure;

plot(gb1,'-bs',...

    'LineWidth',1,...

    'MarkerSize',6,...

    'MarkerEdgeColor','k',...

    'MarkerFaceColor',[0.9,0.0,0.0]);

 

xlabel('优化迭代次数');

ylabel('适应度值');

 

numHiddenUnits = floor(g1(1))+1

LR             = g1(2)

 

layers = func_model2(Dim,numHiddenUnits);

%设置

%迭代次数

%学习率为0.001

options = trainingOptions('adam', ...      

    'MaxEpochs', 1500, ...                

    'InitialLearnRate', LR, ...         

    'LearnRateSchedule', 'piecewise', ... 

    'LearnRateDropFactor', 0.1, ...       

    'LearnRateDropPeriod', 1000, ...       

    'Shuffle', 'every-epoch', ...         

    'Plots', 'training-progress', ...    

    'Verbose', false);

 

%训练

Net = trainNetwork(Nsp_train2, NTsp_train, layers, options);

 

%数据预测

Dpre1 = predict(Net, Nsp_train2);

Dpre2 = predict(Net, Nsp_test2);

 

%归一化还原

T_sim1=Dpre1*Vmax2;

T_sim2=Dpre2*Vmax2;

 

 

%网络结构

analyzeNetwork(Net)

 

 

figure

subplot(211);

plot(1: Num1, Tat_train,'-bs',...

    'LineWidth',1,...

    'MarkerSize',6,...

    'MarkerEdgeColor','k',...

    'MarkerFaceColor',[0.9,0.0,0.0]);

hold on

plot(1: Num1, T_sim1,'g',...

    'LineWidth',2,...

    'MarkerSize',6,...

    'MarkerEdgeColor','k',...

    'MarkerFaceColor',[0.9,0.9,0.0]);

 

legend('真实值', '预测值')

xlabel('预测样本')

ylabel('预测结果')

grid on

 

subplot(212);

plot(1: Num1, Tat_train-T_sim1','-bs',...

    'LineWidth',1,...

    'MarkerSize',6,...

    'MarkerEdgeColor','k',...

    'MarkerFaceColor',[0.9,0.0,0.0]);

 

xlabel('预测样本')

ylabel('预测误差')

grid on

ylim([-50,50]);

figure

subplot(211);

plot(1: Num2, Tat_test,'-bs',...

    'LineWidth',1,...

    'MarkerSize',6,...

    'MarkerEdgeColor','k',...

    'MarkerFaceColor',[0.9,0.0,0.0]);

hold on

plot(1: Num2, T_sim2,'g',...

    'LineWidth',2,...

    'MarkerSize',6,...

    'MarkerEdgeColor','k',...

    'MarkerFaceColor',[0.9,0.9,0.0]);

legend('真实值', '预测值')

xlabel('测试样本')

ylabel('测试结果')

grid on

subplot(212);

plot(1: Num2, Tat_test-T_sim2','-bs',...

    'LineWidth',1,...

    'MarkerSize',6,...

    'MarkerEdgeColor','k',...

    'MarkerFaceColor',[0.9,0.0,0.0]);

 

xlabel('预测样本')

ylabel('预测误差')

grid on

ylim([-50,50]);

 

 

save R2.mat Num2 Tat_test T_sim2 gb1`