Pytorch CNN 天气识别

104 阅读2分钟
  1. 包安装, 数据
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets

import os,PIL,pathlib,random

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

device
data_dir = './data/'
data_dir = pathlib.Path(data_dir)

data_paths = list(data_dir.glob('*'))
print(data_paths)
classeNames = [str(path).split("/")[1] for path in data_paths]
classeNames
import matplotlib.pyplot as plt
from PIL import Image
image_folder = './data/cloudy/'
image_files = [f for f in os.listdir(image_folder) if f.endswith((".jpg", ".png", ".jpeg"))]
fig, axes = plt.subplots(3, 8, figsize=(16, 6))

for ax, img_file in zip(axes.flat, image_files):
    img_path = os.path.join(image_folder, img_file)
    img = Image.open(img_path)
    ax.imshow(img)
    ax.axis('off')

plt.tight_layout()
plt.show()
import pathlib
import shutil
from torchvision import datasets, transforms

checkpoint_dir = pathlib.Path('./data/.ipynb_checkpoints')
if checkpoint_dir.exists() and checkpoint_dir.is_dir():
    shutil.rmtree(checkpoint_dir)

def is_valid_file(path):
    path = pathlib.Path(path)
    return path.suffix.lower() in ['.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', '.webp']

total_datadir = './data/'
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),
    transforms.ToTensor(),
    transforms.Normalize(
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225]
    )
])

total_data = datasets.ImageFolder(total_datadir, transform=train_transforms, is_valid_file=is_valid_file)
train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset
batch_size = 32

train_dl = torch.utils.data.DataLoader(train_dataset,
                                       batch_size=batch_size,
                                       shuffle=True,
                                       num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                      batch_size=batch_size,
                                      shuffle=True,
                                      num_workers=1)

2.构建CNN 网络

# Feature
import torch.nn.functional as F

class Network_bn(nn.Module):
    def __init__(self):
        super(Network_bn, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn1 = nn.BatchNorm2d(12)
        self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn2 = nn.BatchNorm2d(12)
        self.pool1 = nn.MaxPool2d(2,2)
        self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn4 = nn.BatchNorm2d(24)
        self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn5 = nn.BatchNorm2d(24)
        self.pool2 = nn.MaxPool2d(2,2)
        self.fc1 = nn.Linear(24*50*50, len(classeNames))

    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))
        x = F.relu(self.bn2(self.conv2(x)))
        x = self.pool1(x)
        x = F.relu(self.bn4(self.conv4(x)))
        x = F.relu(self.bn5(self.conv5(x)))
        x = self.pool2(x)
        x = x.view(-1, 24*50*50)
        x = self.fc1(x)

        return x

device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))

model = Network_bn().to(device)
model
loss_fn    = nn.CrossEntropyLoss()
learn_rate = 1e-4
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)
def train(dataloader, model, loss_fn, optimizer):
  size = len(dataloader.dataset)
  num_batches = len(dataloader)

  train_loss, train_acc = 0, 0

  for X, y in dataloader:
    X, y = X.to(device), y.to(device)
    pred = model(X)
    loss = loss_fn(pred, y)

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
    train_loss += loss.item()

  train_acc  /= size
  train_loss /= num_batches

  return train_acc, train_loss
def test (dataloader, model, loss_fn):
  size = len(dataloader.dataset)
  num_batches = len(dataloader)
  test_loss, test_acc = 0, 0

  with torch.no_grad():
    for imgs, target in dataloader:
      imgs, target = imgs.to(device), target.to(device)

      target_pred = model(imgs)
      loss = loss_fn(target_pred, target)

      test_loss += loss.item()
      test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()


    test_acc  /= size
    test_loss /= num_batches

  return test_acc, test_loss
epochs = 20
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)

    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)

    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)

    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')
  1. 可视化
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
plt.rcParams['font.sans-serif']    = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.rcParams['figure.dpi']         = 100

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

CleanShot 2024-04-18 at 17.34.55.png