Android init 启动流程

285 阅读11分钟

系统架构

image.png

启动流程

image.png

Loader

Loader层首先就是Boot ROM,当手机处于关机状态时,长按电源键开机,引导芯片从固化在ROM里的预设代码开始执行,然后机制引导程序到RAM中。 而Boot Loader就是引导程序,主要是检查RAM,初始化硬件参数等功能。 Linux内核层前面我们知道Android系统是基于Linux内核,而这时会启动Linux内核的俩个主要进程:

Kernel

启动Kernel的swapper进程(pid=0),该进程又称为是idle进程,是Kernel由无到有的第一个进程,用于初始化进程管理、内存管理,加载Display、Camera Driver、Binder Driver等工作。 启动kthreadd进程(pid=2),该进程是Linux系统的内核进程,会创建内核工作线程kworkder,软中断线程ksoftirqd等内核守护进程。kthreadd进程是所有内核进程的鼻祖。

C++ Framework

Native层上面所说的都是Linux内核进程,而到Native层会创建init进程(pid=1),该进程是用户进程,也是所有用户进程的鼻祖。 init进程的主要作用:

init进程会孵化出ueventd、logd、installd、adbd等用户守护进程(系统必需的一些服务)。 init进程还会启动servicemanager(binder服务管家)、bootanim开机动画等重要服务。 init进程还会孵化出用来管理C++ Framework库的Media Server进程。 init进程会孵化出Zygote进程,Zygote进程是Android系统第一个Java进程(虚拟机进程),所以Zygote是所有Java进程的父进程。

而这里Native层和Linux内核层的通信是利用系统调用,关于系统调用简单来说就是Linux内核为了防止用户态的程序随意调用内核代码导致内核挂掉,所有想使用内核的服务都必须通过系统调用。 这里有一些同学之前认为C++层的代码就是内核层,其实不是的,真正内核层的只有Linux内核层,Native层是用户态的C/C++实现部分。 Java Framework层Zygote进程是由init进程通过解析init.rc后fork而来,由Zygote进程开启Java世界,主要包括:

Framework

加载ZygoteInit类,注册Zygote Socket服务端套接字,这个是为了响应后面fork新进程的需求。 加载虚拟机,即创建ART虚拟机。 预加载类preloadClass。 预加载资源preloadResources。 然后Zygote进程还会孵化出System Server进程,该进程同时也是Zygote孵化的第一个进程,该进程非常熟悉了,它管理着Java framework,包括AMS、WMS等各种服务。 这里有个非常重要的点,就说JNI技术,通过JNI技术打通了Java世界和C/C++世界。

Applications

应用层Zygote进程会孵化出第一个APP进程就是Launcher了,即桌面APP,每个APP至少运行在一个进程上,而这些进程都是由Zygote进程孵化而来。

经过上面的流程梳理,我们更可以发现Android系统设计的巧妙,每一层都有对应的作用,都由相应的进程来管理,我们可以通过Linux的ps命令来简单查看当前系统的所有进程。

main.cpp

aospxref.com/android-11.…

system/core/init

Linux 内核启动过程中会创建 init 进程,init 进程是用户空间的第一个进程(pid=1),对应的可执行程序的源文件文件为 它的 main 方法如下:

    /*
     * Copyright (C) 2018 The Android Open Source Project
     *
     * Licensed under the Apache License, Version 2.0 (the "License");
     * you may not use this file except in compliance with the License.
     * You may obtain a copy of the License at
     *
     *      http://www.apache.org/licenses/LICENSE-2.0
     *
     * Unless required by applicable law or agreed to in writing, software
     * distributed under the License is distributed on an "AS IS" BASIS,
     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     * See the License for the specific language governing permissions and
     * limitations under the License.
     */

    #include "builtins.h"
    #include "first_stage_init.h"
    #include "init.h"
    #include "selinux.h"
    #include "subcontext.h"
    #include "ueventd.h"

    #include <android-base/logging.h>

    #if __has_feature(address_sanitizer)
    #include <sanitizer/asan_interface.h>
    #endif

    #if __has_feature(address_sanitizer)
    // Load asan.options if it exists since these are not yet in the environment.
    // Always ensure detect_container_overflow=0 as there are false positives with this check.
    // Always ensure abort_on_error=1 to ensure we reboot to bootloader for development builds.
    extern "C" const char* __asan_default_options() {
        return "include_if_exists=/system/asan.options:detect_container_overflow=0:abort_on_error=1";
    }

    __attribute__((no_sanitize("address", "memory", "thread", "undefined"))) extern "C" void
    __sanitizer_report_error_summary(const char* summary) {
        LOG(ERROR) << "Init (error summary): " << summary;
    }

    __attribute__((no_sanitize("address", "memory", "thread", "undefined"))) static void
    AsanReportCallback(const char* str) {
        LOG(ERROR) << "Init: " << str;
    }
    #endif

    using namespace android::init;

    int main(int argc, char** argv) {
    #if __has_feature(address_sanitizer)
        __asan_set_error_report_callback(AsanReportCallback);
    #endif

        if (!strcmp(basename(argv[0]), "ueventd")) {
            return ueventd_main(argc, argv);
        }

        if (argc > 1) {
            if (!strcmp(argv[1], "subcontext")) {
                android::base::InitLogging(argv, &android::base::KernelLogger);
                const BuiltinFunctionMap& function_map = GetBuiltinFunctionMap();

                return SubcontextMain(argc, argv, &function_map);
            }

            if (!strcmp(argv[1], "selinux_setup")) {
                return SetupSelinux(argv);
            }

            if (!strcmp(argv[1], "second_stage")) {
                return SecondStageMain(argc, argv);
            }
        }

        return FirstStageMain(argc, argv);
    }

FirstStageMain (first_stage_init.cpp)

aospxref.com/android-11.…

int FirstStageMain(int argc, char** argv) {
    if (REBOOT_BOOTLOADER_ON_PANIC) {
        InstallRebootSignalHandlers();
    }

    boot_clock::time_point start_time = boot_clock::now();

    std::vector<std::pair<std::string, int>> errors;
#define CHECKCALL(x) \
    if ((x) != 0) errors.emplace_back(#x " failed", errno);

    // Clear the umask.
    umask(0);

    CHECKCALL(clearenv());
    CHECKCALL(setenv("PATH", _PATH_DEFPATH, 1));
    // Get the basic filesystem setup we need put together in the initramdisk
    // on / and then we'll let the rc file figure out the rest.
    CHECKCALL(mount("tmpfs", "/dev", "tmpfs", MS_NOSUID, "mode=0755"));
    CHECKCALL(mkdir("/dev/pts", 0755));
    CHECKCALL(mkdir("/dev/socket", 0755));
    CHECKCALL(mount("devpts", "/dev/pts", "devpts", 0, NULL));
#define MAKE_STR(x) __STRING(x)
    CHECKCALL(mount("proc", "/proc", "proc", 0, "hidepid=2,gid=" MAKE_STR(AID_READPROC)));
#undef MAKE_STR
    // Don't expose the raw commandline to unprivileged processes.
    CHECKCALL(chmod("/proc/cmdline", 0440));
    std::string cmdline;
    android::base::ReadFileToString("/proc/cmdline", &cmdline);
    gid_t groups[] = {AID_READPROC};
    CHECKCALL(setgroups(arraysize(groups), groups));
    CHECKCALL(mount("sysfs", "/sys", "sysfs", 0, NULL));
    CHECKCALL(mount("selinuxfs", "/sys/fs/selinux", "selinuxfs", 0, NULL));

    CHECKCALL(mknod("/dev/kmsg", S_IFCHR | 0600, makedev(1, 11)));

    if constexpr (WORLD_WRITABLE_KMSG) {
        CHECKCALL(mknod("/dev/kmsg_debug", S_IFCHR | 0622, makedev(1, 11)));
    }

    CHECKCALL(mknod("/dev/random", S_IFCHR | 0666, makedev(1, 8)));
    CHECKCALL(mknod("/dev/urandom", S_IFCHR | 0666, makedev(1, 9)));

    // This is needed for log wrapper, which gets called before ueventd runs.
    CHECKCALL(mknod("/dev/ptmx", S_IFCHR | 0666, makedev(5, 2)));
    CHECKCALL(mknod("/dev/null", S_IFCHR | 0666, makedev(1, 3)));

    // These below mounts are done in first stage init so that first stage mount can mount
    // subdirectories of /mnt/{vendor,product}/.  Other mounts, not required by first stage mount,
    // should be done in rc files.
    // Mount staging areas for devices managed by vold
    // See storage config details at http://source.android.com/devices/storage/
    CHECKCALL(mount("tmpfs", "/mnt", "tmpfs", MS_NOEXEC | MS_NOSUID | MS_NODEV,
                    "mode=0755,uid=0,gid=1000"));
    // /mnt/vendor is used to mount vendor-specific partitions that can not be
    // part of the vendor partition, e.g. because they are mounted read-write.
    CHECKCALL(mkdir("/mnt/vendor", 0755));
    // /mnt/product is used to mount product-specific partitions that can not be
    // part of the product partition, e.g. because they are mounted read-write.
    CHECKCALL(mkdir("/mnt/product", 0755));

    // /debug_ramdisk is used to preserve additional files from the debug ramdisk
    CHECKCALL(mount("tmpfs", "/debug_ramdisk", "tmpfs", MS_NOEXEC | MS_NOSUID | MS_NODEV,
                    "mode=0755,uid=0,gid=0"));
#undef CHECKCALL

    SetStdioToDevNull(argv);
    // Now that tmpfs is mounted on /dev and we have /dev/kmsg, we can actually
    // talk to the outside world...
    InitKernelLogging(argv);

    if (!errors.empty()) {
        for (const auto& [error_string, error_errno] : errors) {
            LOG(ERROR) << error_string << " " << strerror(error_errno);
        }
        LOG(FATAL) << "Init encountered errors starting first stage, aborting";
    }

    LOG(INFO) << "init first stage started!";

    auto old_root_dir = std::unique_ptr<DIR, decltype(&closedir)>{opendir("/"), closedir};
    if (!old_root_dir) {
        PLOG(ERROR) << "Could not opendir("/"), not freeing ramdisk";
    }

    struct stat old_root_info;
    if (stat("/", &old_root_info) != 0) {
        PLOG(ERROR) << "Could not stat("/"), not freeing ramdisk";
        old_root_dir.reset();
    }

    auto want_console = ALLOW_FIRST_STAGE_CONSOLE ? FirstStageConsole(cmdline) : 0;

    if (!LoadKernelModules(IsRecoveryMode() && !ForceNormalBoot(cmdline), want_console)) {
        if (want_console != FirstStageConsoleParam::DISABLED) {
            LOG(ERROR) << "Failed to load kernel modules, starting console";
        } else {
            LOG(FATAL) << "Failed to load kernel modules";
        }
    }

    if (want_console == FirstStageConsoleParam::CONSOLE_ON_FAILURE) {
        StartConsole();
    }

    if (ForceNormalBoot(cmdline)) {
        mkdir("/first_stage_ramdisk", 0755);
        // SwitchRoot() must be called with a mount point as the target, so we bind mount the
        // target directory to itself here.
        if (mount("/first_stage_ramdisk", "/first_stage_ramdisk", nullptr, MS_BIND, nullptr) != 0) {
            LOG(FATAL) << "Could not bind mount /first_stage_ramdisk to itself";
        }
        SwitchRoot("/first_stage_ramdisk");
    }

    // If this file is present, the second-stage init will use a userdebug sepolicy
    // and load adb_debug.prop to allow adb root, if the device is unlocked.
    if (access("/force_debuggable", F_OK) == 0) {
        std::error_code ec;  // to invoke the overloaded copy_file() that won't throw.
        if (!fs::copy_file("/adb_debug.prop", kDebugRamdiskProp, ec) ||
            !fs::copy_file("/userdebug_plat_sepolicy.cil", kDebugRamdiskSEPolicy, ec)) {
            LOG(ERROR) << "Failed to setup debug ramdisk";
        } else {
            // setenv for second-stage init to read above kDebugRamdisk* files.
            setenv("INIT_FORCE_DEBUGGABLE", "true", 1);
        }
    }

    if (!DoFirstStageMount()) {
        LOG(FATAL) << "Failed to mount required partitions early ...";
    }

    struct stat new_root_info;
    if (stat("/", &new_root_info) != 0) {
        PLOG(ERROR) << "Could not stat("/"), not freeing ramdisk";
        old_root_dir.reset();
    }

    if (old_root_dir && old_root_info.st_dev != new_root_info.st_dev) {
        FreeRamdisk(old_root_dir.get(), old_root_info.st_dev);
    }

    SetInitAvbVersionInRecovery();

    setenv(kEnvFirstStageStartedAt, std::to_string(start_time.time_since_epoch().count()).c_str(),
           1);

    const char* path = "/system/bin/init";
    const char* args[] = {path, "selinux_setup", nullptr};
    auto fd = open("/dev/kmsg", O_WRONLY | O_CLOEXEC);
    dup2(fd, STDOUT_FILENO);
    dup2(fd, STDERR_FILENO);
    close(fd);
    execv(path, const_cast<char**>(args));

    // execv() only returns if an error happened, in which case we
    // panic and never fall through this conditional.
    PLOG(FATAL) << "execv("" << path << "") failed";

    return 1;
}

再次执行到 init.cpp 的 main -> selinux_setup

SetupSelinux (selinux.cpp)

aospxref.com/android-11.…

int SetupSelinux(char** argv) {
    SetStdioToDevNull(argv);
    InitKernelLogging(argv);

    if (REBOOT_BOOTLOADER_ON_PANIC) {
        InstallRebootSignalHandlers();
    }

    boot_clock::time_point start_time = boot_clock::now();

    MountMissingSystemPartitions();

    // Set up SELinux, loading the SELinux policy.
    SelinuxSetupKernelLogging();
    SelinuxInitialize();

    // We're in the kernel domain and want to transition to the init domain.  File systems that
    // store SELabels in their xattrs, such as ext4 do not need an explicit restorecon here,
    // but other file systems do.  In particular, this is needed for ramdisks such as the
    // recovery image for A/B devices.
    if (selinux_android_restorecon("/system/bin/init", 0) == -1) {
        PLOG(FATAL) << "restorecon failed of /system/bin/init failed";
    }

    setenv(kEnvSelinuxStartedAt, std::to_string(start_time.time_since_epoch().count()).c_str(), 1);

    const char* path = "/system/bin/init";
    const char* args[] = {path, "second_stage", nullptr};
    execv(path, const_cast<char**>(args));

    // execv() only returns if an error happened, in which case we
    // panic and never return from this function.
    PLOG(FATAL) << "execv("" << path << "") failed";

    return 1;
}

SecondStageMain (init.cpp)

aospxref.com/android-11.…


int SecondStageMain(int argc, char** argv) {
    if (REBOOT_BOOTLOADER_ON_PANIC) {
        InstallRebootSignalHandlers();
    }

    boot_clock::time_point start_time = boot_clock::now();

    trigger_shutdown = [](const std::string& command) { shutdown_state.TriggerShutdown(command); };

    SetStdioToDevNull(argv);
    InitKernelLogging(argv);
    LOG(INFO) << "init second stage started!";

    // Init should not crash because of a dependence on any other process, therefore we ignore
    // SIGPIPE and handle EPIPE at the call site directly.  Note that setting a signal to SIG_IGN
    // is inherited across exec, but custom signal handlers are not.  Since we do not want to
    // ignore SIGPIPE for child processes, we set a no-op function for the signal handler instead.
    {
        struct sigaction action = {.sa_flags = SA_RESTART};
        action.sa_handler = [](int) {};
        sigaction(SIGPIPE, &action, nullptr);
    }

    // Set init and its forked children's oom_adj.
    if (auto result =
                WriteFile("/proc/1/oom_score_adj", StringPrintf("%d", DEFAULT_OOM_SCORE_ADJUST));
        !result.ok()) {
        LOG(ERROR) << "Unable to write " << DEFAULT_OOM_SCORE_ADJUST
                   << " to /proc/1/oom_score_adj: " << result.error();
    }

    // Set up a session keyring that all processes will have access to. It
    // will hold things like FBE encryption keys. No process should override
    // its session keyring.
    keyctl_get_keyring_ID(KEY_SPEC_SESSION_KEYRING, 1);

    // Indicate that booting is in progress to background fw loaders, etc.
    close(open("/dev/.booting", O_WRONLY | O_CREAT | O_CLOEXEC, 0000));

    // See if need to load debug props to allow adb root, when the device is unlocked.
    const char* force_debuggable_env = getenv("INIT_FORCE_DEBUGGABLE");
    bool load_debug_prop = false;
    if (force_debuggable_env && AvbHandle::IsDeviceUnlocked()) {
        load_debug_prop = "true"s == force_debuggable_env;
    }
    unsetenv("INIT_FORCE_DEBUGGABLE");

    // Umount the debug ramdisk so property service doesn't read .prop files from there, when it
    // is not meant to.
    if (!load_debug_prop) {
        UmountDebugRamdisk();
    }

    PropertyInit();

    // Umount the debug ramdisk after property service has read the .prop files when it means to.
    if (load_debug_prop) {
        UmountDebugRamdisk();
    }

    // Mount extra filesystems required during second stage init
    MountExtraFilesystems();

    // Now set up SELinux for second stage.
    SelinuxSetupKernelLogging();
    SelabelInitialize();
    SelinuxRestoreContext();

    Epoll epoll;
    if (auto result = epoll.Open(); !result.ok()) {
        PLOG(FATAL) << result.error();
    }

    InstallSignalFdHandler(&epoll);
    InstallInitNotifier(&epoll);
    StartPropertyService(&property_fd);

    // Make the time that init stages started available for bootstat to log.
    RecordStageBoottimes(start_time);

    // Set libavb version for Framework-only OTA match in Treble build.
    if (const char* avb_version = getenv("INIT_AVB_VERSION"); avb_version != nullptr) {
        SetProperty("ro.boot.avb_version", avb_version);
    }
    unsetenv("INIT_AVB_VERSION");

    fs_mgr_vendor_overlay_mount_all();
    export_oem_lock_status();
    MountHandler mount_handler(&epoll);
    SetUsbController();

    const BuiltinFunctionMap& function_map = GetBuiltinFunctionMap();
    Action::set_function_map(&function_map);

    if (!SetupMountNamespaces()) {
        PLOG(FATAL) << "SetupMountNamespaces failed";
    }

    InitializeSubcontext();

    ActionManager& am = ActionManager::GetInstance();
    ServiceList& sm = ServiceList::GetInstance();

    LoadBootScripts(am, sm);

    // Turning this on and letting the INFO logging be discarded adds 0.2s to
    // Nexus 9 boot time, so it's disabled by default.
    if (false) DumpState();

    // Make the GSI status available before scripts start running.
    auto is_running = android::gsi::IsGsiRunning() ? "1" : "0";
    SetProperty(gsi::kGsiBootedProp, is_running);
    auto is_installed = android::gsi::IsGsiInstalled() ? "1" : "0";
    SetProperty(gsi::kGsiInstalledProp, is_installed);

    am.QueueBuiltinAction(SetupCgroupsAction, "SetupCgroups");
    am.QueueBuiltinAction(SetKptrRestrictAction, "SetKptrRestrict");
    am.QueueBuiltinAction(TestPerfEventSelinuxAction, "TestPerfEventSelinux");
    am.QueueEventTrigger("early-init");

    // Queue an action that waits for coldboot done so we know ueventd has set up all of /dev...
    am.QueueBuiltinAction(wait_for_coldboot_done_action, "wait_for_coldboot_done");
    // ... so that we can start queuing up actions that require stuff from /dev.
    am.QueueBuiltinAction(MixHwrngIntoLinuxRngAction, "MixHwrngIntoLinuxRng");
    am.QueueBuiltinAction(SetMmapRndBitsAction, "SetMmapRndBits");
    Keychords keychords;
    am.QueueBuiltinAction(
            [&epoll, &keychords](const BuiltinArguments& args) -> Result<void> {
                for (const auto& svc : ServiceList::GetInstance()) {
                    keychords.Register(svc->keycodes());
                }
                keychords.Start(&epoll, HandleKeychord);
                return {};
            },
            "KeychordInit");

    // Trigger all the boot actions to get us started.
    am.QueueEventTrigger("init");

    // Repeat mix_hwrng_into_linux_rng in case /dev/hw_random or /dev/random
    // wasn't ready immediately after wait_for_coldboot_done
    am.QueueBuiltinAction(MixHwrngIntoLinuxRngAction, "MixHwrngIntoLinuxRng");

    // Don't mount filesystems or start core system services in charger mode.
    std::string bootmode = GetProperty("ro.bootmode", "");
    if (bootmode == "charger") {
        am.QueueEventTrigger("charger");
    } else {
        am.QueueEventTrigger("late-init");
    }

    // Run all property triggers based on current state of the properties.
    am.QueueBuiltinAction(queue_property_triggers_action, "queue_property_triggers");

    while (true) {
        // By default, sleep until something happens.
        auto epoll_timeout = std::optional<std::chrono::milliseconds>{};

        auto shutdown_command = shutdown_state.CheckShutdown();
        if (shutdown_command) {
            HandlePowerctlMessage(*shutdown_command);
        }

        if (!(prop_waiter_state.MightBeWaiting() || Service::is_exec_service_running())) {
            am.ExecuteOneCommand();
        }
        if (!IsShuttingDown()) {
            auto next_process_action_time = HandleProcessActions();

            // If there's a process that needs restarting, wake up in time for that.
            if (next_process_action_time) {
                epoll_timeout = std::chrono::ceil<std::chrono::milliseconds>(
                        *next_process_action_time - boot_clock::now());
                if (*epoll_timeout < 0ms) epoll_timeout = 0ms;
            }
        }

        if (!(prop_waiter_state.MightBeWaiting() || Service::is_exec_service_running())) {
            // If there's more work to do, wake up again immediately.
            if (am.HasMoreCommands()) epoll_timeout = 0ms;
        }

        auto pending_functions = epoll.Wait(epoll_timeout);
        if (!pending_functions.ok()) {
            LOG(ERROR) << pending_functions.error();
        } else if (!pending_functions->empty()) {
            // We always reap children before responding to the other pending functions. This is to
            // prevent a race where other daemons see that a service has exited and ask init to
            // start it again via ctl.start before init has reaped it.
            ReapAnyOutstandingChildren();
            for (const auto& function : *pending_functions) {
                (*function)();
            }
        }
        if (!IsShuttingDown()) {
            HandleControlMessages();
            SetUsbController();
        }
    }

    return 0;
}

LoadBootScripts(am, sm);

static void LoadBootScripts(ActionManager& action_manager, ServiceList& service_list) {
    Parser parser = CreateParser(action_manager, service_list);

    std::string bootscript = GetProperty("ro.boot.init_rc", "");
    if (bootscript.empty()) {
        parser.ParseConfig("/system/etc/init/hw/init.rc");
        if (!parser.ParseConfig("/system/etc/init")) {
            late_import_paths.emplace_back("/system/etc/init");
        }
        // late_import is available only in Q and earlier release. As we don't
        // have system_ext in those versions, skip late_import for system_ext.
        parser.ParseConfig("/system_ext/etc/init");
        if (!parser.ParseConfig("/product/etc/init")) {
            late_import_paths.emplace_back("/product/etc/init");
        }
        if (!parser.ParseConfig("/odm/etc/init")) {
            late_import_paths.emplace_back("/odm/etc/init");
        }
        if (!parser.ParseConfig("/vendor/etc/init")) {
            late_import_paths.emplace_back("/vendor/etc/init");
        }
    } else {
        parser.ParseConfig(bootscript);
    }
}

加载init.rc

aosp.app/android-13.…

init.zygote64.rc

aosp.app/android-13.…

init.rc 通过 import 的方法是导入 init.zygote64.rc

import /init.environ.rc
import /system/etc/init/hw/init.usb.rc
import /init.${ro.hardware}.rc
import /vendor/etc/init/hw/init.${ro.hardware}.rc
import /system/etc/init/hw/init.usb.configfs.rc
import /system/etc/init/hw/init.${ro.zygote}.rc
service zygote /system/bin/app_process64 -Xzygote /system/bin --zygote --start-system-server
    class main
    priority -20
    user root
    group root readproc reserved_disk
    socket zygote stream 660 root system
    socket usap_pool_primary stream 660 root system
    onrestart exec_background - system system -- /system/bin/vdc volume abort_fuse
    onrestart write /sys/power/state on
    onrestart restart audioserver
    onrestart restart cameraserver
    onrestart restart media
    onrestart restart media.tuner
    onrestart restart netd
    onrestart restart wificond
    task_profiles ProcessCapacityHigh
    critical window=${zygote.critical_window.minute:-off} target=zygote-fatal

ueventd 守护进程启动

    ...
    # Start logd before any other services run to ensure we capture all of their logs.
    start logd

    ...
    start ueventd
    ...
    ## Daemon processes to be run by init.
    ##
    service ueventd /system/bin/ueventd
        class core
        critical
        seclabel u:r:ueventd:s0
        shutdown critical

    service console /system/bin/sh
        class core
        console
        disabled
        user shell
        group shell log readproc
        seclabel u:r:shell:s0
        setenv HOSTNAME console
servermanager 启动
   start bootanim
...
    start servicemanager
    start hwservicemanager
    start vndservicemanager

SecondStageMain 最后的死循环一直运行,等待系统服务