Redis的缓存读写策略

131 阅读1分钟

旁路缓存模式

服务端需要同时维系db和cache,并且是以db的结果为准,

如果是更新:

  • 先更新 db
  • 然后直接删除 cache 。

读 :

  • 从 cache 中读取数据,读取到就直接返回
  • cache 中读取不到的话,就从 db 中读取数据返回
  • 再把数据放到 cache 中。

现在我们再来分析一下 Cache Aside Pattern 的缺陷。

缺陷 1:首次请求数据一定不在 cache 的问题

解决办法:可以将热点数据可以提前放入 cache 中。

缺陷 2:写操作比较频繁的话导致 cache 中的数据会被频繁被删除,这样会影响缓存命中率 。

解决办法:

  • 数据库和缓存数据强一致场景:更新 db 的时候同样更新 cache,不过我们需要加一个锁/分布式锁来保证更新 cache 的时候不存在线程安全问题。
  • 可以短暂地允许数据库和缓存数据不一致的场景:更新 db 的时候同样更新 cache,但是给缓存加一个比较短的过期时间,这样的话就可以保证即使数据不一致的话影响也比较小。(#read-write-through-pattern-读写穿透)

读写穿透

Read/Write Through Pattern 中服务端把 cache 视为主要数据存储,从中读取数据并将数据写入其中。cache 服务负责将此数据读取和写入 db,从而减轻了应用程序的职责。

异步缓存写入

Write Behind Pattern 和 Read/Write Through Pattern 很相似,两者都是由 cache 服务来负责 cache 和 db 的读写。