好东西,当然要直接动手用起来
一、环境准备
conda create -n sdcode python=3.10 -y
conda activate sdcode
conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.7 -c pytorch -c nvidia
pip3 install spaces transformers tiktoken
二、界面app.py
import argparse
import os
import spaces
import gradio as gr
import json
from threading import Thread
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
MAX_LENGTH = 4096
DEFAULT_MAX_NEW_TOKENS = 1024
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--base_model", type=str) # model path
parser.add_argument("--n_gpus", type=int, default=1) # n_gpu
return parser.parse_args()
@spaces.GPU()
def predict(message, history, system_prompt, temperature, max_tokens):
global model, tokenizer, device
instruction = "<|im_start|>system\nA chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.\n<|im_end|>\n"
for human, assistant in history:
instruction += '<|im_start|>user\n' + human + '\n<|im_end|>\n<|im_start|>assistant\n' + assistant
instruction += '\n<|im_start|>user\n' + message + '\n<|im_end|>\n<|im_start|>assistant\n'
problem = [instruction]
stop_tokens = ["<|endoftext|>", "<|im_end|>"]
streamer = TextIteratorStreamer(tokenizer, timeout=100.0, skip_prompt=True, skip_special_tokens=True)
enc = tokenizer(problem, return_tensors="pt", padding=True, truncation=True)
input_ids = enc.input_ids
attention_mask = enc.attention_mask
if input_ids.shape[1] > MAX_LENGTH:
input_ids = input_ids[:, -MAX_LENGTH:]
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
generate_kwargs = dict(
{"input_ids": input_ids, "attention_mask": attention_mask},
streamer=streamer,
do_sample=True,
top_p=0.95,
temperature=0.5,
max_new_tokens=DEFAULT_MAX_NEW_TOKENS,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
if text in stop_tokens:
break
print(text)
yield "".join(outputs)
if __name__ == "__main__":
args = parse_args()
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stable-code-instruct-3b")
model = AutoModelForCausalLM.from_pretrained("stabilityai/stable-code-instruct-3b", torch_dtype=torch.bfloat16)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
gr.ChatInterface(
predict,
title="Stable Code Instruct Chat - Demo",
description="Chat Model Stable Code 3B",
theme="soft",
chatbot=gr.Chatbot(label="Chat History",),
textbox=gr.Textbox(placeholder="input", container=False, scale=7),
retry_btn=None,
undo_btn="Delete Previous",
clear_btn="Clear",
additional_inputs=[
gr.Textbox("A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.", label="System Prompt"),
gr.Slider(0, 1, 0.9, label="Temperature"),
gr.Slider(100, 2048, 1024, label="Max Tokens"),
],
additional_inputs_accordion_name="Parameters",
).queue().launch(server_name="0.0.0.0", server_port=8000, share=False, auth=[("username", "password")])
注意,最后指定了IP和端口,以及用户名密码