鸿蒙学习路线图-ArkTS语言渲染逻辑控制

391 阅读4分钟

三种渲染机制

1. if/else:条件渲染

执行原理

  1. 删除所有以前渲染的(早期分支的)组件。
  2. 执行新分支的构造函数,将生成的子组件添加到其父组件中。

2. ForEach:循环渲染

接口描述

 ForEach(
  arr: Array,
  itemGenerator: (item: any, index: number) => void,
  keyGenerator?: (item: any, index: number) => string
  )

键值生成规则

在ForEach循环渲染过程中,系统会为每个数组元素生成一个唯一且持久的键值,用于标识对应的组件。当这个键值变化时,ArkUI框架将视为该数组元素已被替换或修改,并会基于新的键值创建一个新的组件。 ForEach提供了一个名为keyGenerator的参数,这是一个函数,开发者可以通过它自定义键值的生成规则。如果开发者没有定义keyGenerator函数,则ArkUI框架会使用默认的键值生成函数,即(item: any, index: number) => { return index + '__' + JSON.stringify(item); }。

在确定键值生成规则后,ForEach的第二个参数itemGenerator函数会根据键值生成规则为数据源的每个数组项创建组件。组件的创建包括两种情况:ForEach首次渲染ForEach非首次渲染

当key不重复时生成所有的数据

@Entry
@Component
struct Parent {
  @State simpleList: Array<string> = ['one', 'two', 'three'];

  build() {
    Row() {
      Column() {
        ForEach(this.simpleList, (item: string) => {
          ChildItem({ 'item': item } as Record<string, string>)
        }, (item: string) => item)
      }
      .width('100%')
      .height('100%')
    }
    .height('100%')
    .backgroundColor(0xF1F3F5)
  }
}

@Component
struct ChildItem {
  @Prop item: string;

  build() {
    Text(this.item)
      .fontSize(50)
  }
}

当不同数组项按照键值生成规则生成的键值相同时,框架的行为是未定义的。例如,在以下代码中,ForEach渲染相同的数据项two时,只创建了一个ChildItem组件,而没有创建多个具有相同键值的组件。

@Entry
@Component
struct Parent {
  @State simpleList: Array<string> = ['one', 'two', 'two', 'three'];

  build() {
    Row() {
      Column() {
        ForEach(this.simpleList, (item: string) => {
          ChildItem({ 'item': item } as Record<string, string>)
        }, (item: string) => item)
       // **}, (item: string,index:number) => index+"")**
      }
      .width('100%')
      .height('100%')
    }
    .height('100%')
    .backgroundColor(0xF1F3F5)
  }
}

@Component
struct ChildItem {
  @Prop item: string;

  build() {
    Text(this.item)
      .fontSize(50)
  }
}

当修改其中一个值的时候,只有自己被修改,其他的不会被修改,当key值不发生变化的时候,则不进行修改和重新渲染

监听对象

ForEach组件在开发过程中的主要应用场景包括:数据源不变数据源数组项发生变化(如插入、删除操作)、数据源数组项子属性变化

开发者在使用ForEach的过程中,若对于键值生成规则的理解不够充分,可能会出现错误的使用方式。错误使用一方面会导致功能层面问题,例如渲染结果非预期,另一方面会导致性能层面问题,例如渲染性能降低

3. LazyForEach:数据懒加载

接口描述

LazyForEach(
    dataSource: IDataSource,             // 需要进行数据迭代的数据源
    itemGenerator: (item: any, index: number) => void,  // 子组件生成函数
    keyGenerator?: (item: any, index: number) => string // 键值生成函数
): void
  • LazyForEach必须在容器组件内使用,仅有List、Grid、Swiper以及WaterFlow组件支持数据懒加载(可配置cachedCount属性,即只加载可视部分以及其前后少量数据用于缓冲),其他组件仍然是一次性加载所有的数据。
  • 允许LazyForEach包含在if/else条件渲染语句中,也允许LazyForEach中出现if/else条件渲染语句。
  • 键值生成器必须针对每个数据生成唯一的值,如果键值相同,将导致键值相同的UI组件渲染出现问题。
  • LazyForEach必须使用DataChangeListener对象来进行更新,第一个参数dataSource使用状态变量时,状态变量改变不会触发LazyForEach的UI刷新。
  • 为了高性能渲染,通过DataChangeListener对象的onDataChange方法来更新UI时,需要生成不同于原来的键值来触发组件刷新。
  • @ObjectLink装饰的成员变量仅能监听到其子属性的变化,再深入嵌套的属性便无法观测到了,因此我们只能改变它的子属性去通知对应组件重新渲染,具体请查看@ObjectLink与@Observed的详细使用方法和限制条件。

IDataSource类型说明

interface IDataSource {
    totalCount(): number; // 获得数据总数
    getData(index: number): Object; // 获取索引值对应的数据
    registerDataChangeListener(listener: DataChangeListener): void; // 注册数据改变的监听器
    unregisterDataChangeListener(listener: DataChangeListener): void; // 注销数据改变的监听器
}

DataChangeListener类型说明

interface DataChangeListener {
    onDataReloaded(): void; // 重新加载数据完成后调用
    onDataAdded(index: number): void; // 添加数据完成后调用
    onDataMoved(from: number, to: number): void; // 数据移动起始位置与数据移动目标位置交换完成后调用
    onDataDeleted(index: number): void; // 删除数据完成后调用
    onDataChanged(index: number): void; // 改变数据完成后调用
    onDataAdd(index: number): void; // 添加数据完成后调用
    onDataMove(from: number, to: number): void; // 数据移动起始位置与数据移动目标位置交换完成后调用
    onDataDelete(index: number): void; // 删除数据完成后调用
    onDataChange(index: number): void; // 改变数据完成后调用
}