从输入URL到页面加载的过程中都经历了什么?
从浏览器接收url到开启网络请求线程
这一部分展开的内容是:浏览器进程/线程模型,JS的运行机制
多进程的浏览器
浏览器是多进程的,有一个主控进程,以及每一个tab页面都会新开一个进程(某些情况下多个tab会合并进程)
进程可能包括主控进程,插件进程,GPU,tab页(浏览器内核)等等
- Browser进程:浏览器的主进程(负责协调、主控),只有一个
- 第三方插件进程:每种类型的插件对应一个进程,仅当使用该插件时才创建
- GPU进程:最多一个,用于3D绘制
- 浏览器渲染进程(内核):默认每个Tab页面一个进程,互不影响,控制页面渲染,脚本执行,事件处理等(有时候会优化,如多个空白tab会合并成一个进程)
多线程的浏览器内核
每一个tab页面可以看作是浏览器内核进程,然后这个进程是多线程的,它有几大类子线程
- GUI线程
- JS引擎线程
- 事件触发线程
- 定时器线程
- 网络请求线程
可以看到,里面的JS引擎是内核进程中的一个线程,这也是为什么常说JS引擎是单线程的
解析URL
输入URL后,会进行解析(URL的本质就是统一资源定位符)
URL一般包括几大部分:
protocol,协议头,譬如有http,ftp等host,主机域名或IP地址port,端口号path,目录路径query,即查询参数fragment,即#后的hash值,一般用来定位到某个位置
开启网络线程到发出一个完整的http请求
这一部分主要内容包括:dns查询,tcp/ip请求构建,五层因特网协议栈等等
仍然是先梳理主干,有些详细的过程不展开(因为展开的话内容过多)
DNS查询得到IP
如果输入的是域名,需要进行dns解析成IP,大致流程:
- 如果浏览器有缓存,直接使用浏览器缓存,否则使用本机缓存,再没有的话就是用host
- 如果本地没有,就向dns域名服务器查询(当然,中间可能还会经过路由,也有缓存等),查询到对应的IP
注意,域名查询时有可能是经过了CDN调度器的(如果有cdn存储功能的话)
而且,需要知道dns解析是很耗时的,因此如果解析域名过多,会让首屏加载变得过慢,可以考虑dns-prefetch优化
这一块可以深入展开,具体请去网上搜索,这里就不占篇幅了(网上可以看到很详细的解答)
tcp/ip请求
http的本质就是tcp/ip请求
需要了解3次握手规则建立连接以及断开连接时的四次挥手
tcp将http长报文划分为短报文,通过三次握手与服务端建立连接,进行可靠传输
三次握手的步骤:(抽象派)
客户端:hello,你是server么?
服务端:hello,我是server,你是client么
客户端:yes,我是client
建立连接成功后,接下来就正式传输数据
然后,待到断开连接时,需要进行四次挥手(因为是全双工的,所以需要四次挥手)
四次挥手的步骤:(抽象派)
主动方:我已经关闭了向你那边的主动通道了,只能被动接收了
被动方:收到通道关闭的信息
被动方:那我也告诉你,我这边向你的主动通道也关闭了
主动方:最后收到数据,之后双方无法通信
tcp/ip的并发限制
浏览器对同一域名下并发的tcp连接是有限制的(2-10个不等)
而且在http1.0中往往一个资源下载就需要对应一个tcp/ip请求
所以针对这个瓶颈,又出现了很多的资源优化方案
get和post的区别
get和post虽然本质都是tcp/ip,但两者除了在http层面外,在tcp/ip层面也有区别。
get会产生一个tcp数据包,post两个
具体就是:
- get请求时,浏览器会把
headers和data一起发送出去,服务器响应200(返回数据), - post请求时,浏览器先发送
headers,服务器响应100 continue, 浏览器再发送data,服务器响应200(返回数据)。
负载均衡
对于大型的项目,由于并发访问量很大,所以往往一台服务器是吃不消的,所以一般会有若干台服务器组成一个集群,然后配合反向代理实现负载均衡
简单的说:
用户发起的请求都指向调度服务器(反向代理服务器,譬如安装了nginx控制负载均衡),然后调度服务器根据实际的调度算法,分配不同的请求给对应集群中的服务器执行,然后调度器等待实际服务器的HTTP响应,并将它反馈给用户
单独拎出来的缓存问题,http的缓存
前后端的http交互中,使用缓存能很大程度上的提升效率,而且基本上对性能有要求的前端项目都是必用缓存的
强缓存与弱缓存
缓存可以简单的划分成两种类型:强缓存(200 from cache)与协商缓存(304)
区别简述如下:
- 强缓存(
200 from cache)时,浏览器如果判断本地缓存未过期,就直接使用,无需发起http请求 - 协商缓存(
304)时,浏览器会向服务端发起http请求,然后服务端告诉浏览器文件未改变,让浏览器使用本地缓存
对于协商缓存,使用Ctrl + F5强制刷新可以使得缓存无效
但是对于强缓存,在未过期时,必须更新资源路径才能发起新的请求(更改了路径相当于是另一个资源了,这也是前端工程化中常用到的技巧)
缓存头部简述
上述提到了强缓存和协商缓存,那它们是怎么区分的呢?
答案是通过不同的http头部控制
先看下这几个头部:
复制代码
If-None-Match/E-tag、If-Modified-Since/Last-Modified、Cache-Control/Max-Age、Pragma/Expires
这些就是缓存中常用到的头部,这里不展开。仅列举下大致使用。
属于强缓存控制的:
复制代码
(http1.1)Cache-Control/Max-Age
(http1.0)Pragma/Expires
注意:Max-Age不是一个头部,它是Cache-Control头部的值
属于协商缓存控制的:
复制代码
(http1.1)If-None-Match/E-tag
(http1.0)If-Modified-Since/Last-Modified
可以看到,上述有提到http1.1和http1.0,这些不同的头部是属于不同http时期的
再提一点,其实HTML页面中也有一个meta标签可以控制缓存方案-Pragma
复制代码
<META HTTP-EQUIV="Pragma" CONTENT="no-cache">
不过,这种方案还是比较少用到,因为支持情况不佳,譬如缓存代理服务器肯定不支持,所以不推荐
头部的区别
首先明确,http的发展是从http1.0到http1.1
而在http1.1中,出了一些新内容,弥补了http1.0的不足。
http1.0中的缓存控制:
Pragma:严格来说,它不属于专门的缓存控制头部,但是它设置no-cache时可以让本地强缓存失效(属于编译控制,来实现特定的指令,主要是因为兼容http1.0,所以以前又被大量应用)Expires:服务端配置的,属于强缓存,用来控制在规定的时间之前,浏览器不会发出请求,而是直接使用本地缓存,注意,Expires一般对应服务器端时间,如Expires:Fri, 30 Oct 1998 14:19:41If-Modified-Since/Last-Modified:这两个是成对出现的,属于协商缓存的内容,其中浏览器的头部是If-Modified-Since,而服务端的是Last-Modified,它的作用是,在发起请求时,如果If-Modified-Since和Last-Modified匹配,那么代表服务器资源并未改变,因此服务端不会返回资源实体,而是只返回头部,通知浏览器可以使用本地缓存。Last-Modified,顾名思义,指的是文件最后的修改时间,而且只能精确到1s以内
http1.1中的缓存控制:
Cache-Control:缓存控制头部,有no-cache、max-age等多种取值Max-Age:服务端配置的,用来控制强缓存,在规定的时间之内,浏览器无需发出请求,直接使用本地缓存,注意,Max-Age是Cache-Control头部的值,不是独立的头部,譬如Cache-Control: max-age=3600,而且它值得是绝对时间,由浏览器自己计算If-None-Match/E-tag:这两个是成对出现的,属于协商缓存的内容,其中浏览器的头部是If-None-Match,而服务端的是E-tag,同样,发出请求后,如果If-None-Match和E-tag匹配,则代表内容未变,通知浏览器使用本地缓存,和Last-Modified不同,E-tag更精确,它是类似于指纹一样的东西,基于FileEtag INode Mtime Size生成,也就是说,只要文件变,指纹就会变,而且没有1s精确度的限制。
Max-Age相比Expires?
Expires使用的是服务器端的时间
但是有时候会有这样一种情况-客户端时间和服务端不同步
那这样,可能就会出问题了,造成了浏览器本地的缓存无用或者一直无法过期
所以一般http1.1后不推荐使用Expires
而Max-Age使用的是客户端本地时间的计算,因此不会有这个问题
因此推荐使用Max-Age。
注意,如果同时启用了Cache-Control与Expires,Cache-Control优先级高。
E-tag相比Last-Modified?
Last-Modified:
- 表明服务端的文件最后何时改变的
- 它有一个缺陷就是只能精确到1s,
- 然后还有一个问题就是有的服务端的文件会周期性的改变,导致缓存失效
而E-tag:
- 是一种指纹机制,代表文件相关指纹
- 只有文件变才会变,也只要文件变就会变,
- 也没有精确时间的限制,只要文件一遍,立马E-tag就不一样了
如果同时带有E-tag和Last-Modified,服务端会优先检查E-tag
各大缓存头部的整体关系如下图
解析页面流程
前面有提到http交互,那么接下来就是浏览器获取到html,然后解析,渲染
这部分很多都参考了网上资源,特别是图片,参考了来源中的文章
流程简述
浏览器内核拿到内容后,渲染步骤大致可以分为以下几步:
复制代码
1. 解析HTML,构建DOM树
2. 解析CSS,生成CSS规则树
3. 合并DOM树和CSS规则,生成render树
4. 布局render树(Layout/reflow),负责各元素尺寸、位置的计算
5. 绘制render树(paint),绘制页面像素信息
6. 浏览器会将各层的信息发送给GPU,GPU会将各层合成(composite),显示在屏幕上
如下图:
HTML解析,构建DOM
整个渲染步骤中,HTML解析是第一步。
简单的理解,这一步的流程是这样的:浏览器解析HTML,构建DOM树。
但实际上,在分析整体构建时,却不能一笔带过,得稍微展开。
解析HTML到构建出DOM当然过程可以简述如下:
复制代码
Bytes → characters → tokens → nodes → DOM
譬如假设有这样一个HTML页面:(以下部分的内容出自参考来源,修改了下格式)
复制代码
<html>
<head>
<meta name="viewport" content="width=device-width,initial-scale=1">
<link href="style.css" rel="stylesheet">
<title>Critical Path</title>
</head>
<body>
<p>Hello <span>web performance</span> students!</p>
<div><img src="awesome-photo.jpg"></div>
</body>
</html>
浏览器的处理如下:
列举其中的一些重点过程:
复制代码
1. Conversion转换:浏览器将获得的HTML内容(Bytes)基于他的编码转换为单个字符
2. Tokenizing分词:浏览器按照HTML规范标准将这些字符转换为不同的标记token。每个token都有自己独特的含义以及规则集
3. Lexing词法分析:分词的结果是得到一堆的token,此时把他们转换为对象,这些对象分别定义他们的属性和规则
4. DOM构建:因为HTML标记定义的就是不同标签之间的关系,这个关系就像是一个树形结构一样
例如:body对象的父节点就是HTML对象,然后段略p对象的父节点就是body对象
最后的DOM树如下:
生成CSS规则
同理,CSS规则树的生成也是类似。简述为:
复制代码
Bytes → characters → tokens → nodes → CSSOM
譬如style.css内容如下:
复制代码
body { font-size: 16px }
p { font-weight: bold }
span { color: red }
p span { display: none }
img { float: right }
那么最终的CSSOM树就是:
构建渲染树
当DOM树和CSSOM都有了后,就要开始构建渲染树了
一般来说,渲染树和DOM树相对应的,但不是严格意义上的一一对应
因为有一些不可见的DOM元素不会插入到渲染树中,如head这种不可见的标签或者display: none等
整体来说可以看图:
渲染
有了render树,接下来就是开始渲染,基本流程如下:
图中重要的四个步骤就是:
复制代码
1. 计算CSS样式
2. 构建渲染树
3. 布局,主要定位坐标和大小,是否换行,各种position overflow z-index属性
4. 绘制,将图像绘制出来
然后,图中的线与箭头代表通过js动态修改了DOM或CSS,导致了重新布局(Layout)或渲染(Repaint)
这里Layout和Repaint的概念是有区别的:
- Layout,也称为Reflow,即回流。一般意味着元素的内容、结构、位置或尺寸发生了变化,需要重新计算样式和渲染树
- Repaint,即重绘。意味着元素发生的改变只是影响了元素的一些外观之类的时候(例如,背景色,边框颜色,文字颜色等),此时只需要应用新样式绘制这个元素就可以了
回流的成本开销要高于重绘,而且一个节点的回流往往回导致子节点以及同级节点的回流, 所以优化方案中一般都包括,尽量避免回流。
什么会引起回流?
复制代码
1.页面渲染初始化
2.DOM结构改变,比如删除了某个节点
3.render树变化,比如减少了padding
4.窗口resize
5.最复杂的一种:获取某些属性,引发回流,
很多浏览器会对回流做优化,会等到数量足够时做一次批处理回流,
但是除了render树的直接变化,当获取一些属性时,浏览器为了获得正确的值也会触发回流,这样使得浏览器优化无效,包括
(1)offset(Top/Left/Width/Height)
(2) scroll(Top/Left/Width/Height)
(3) cilent(Top/Left/Width/Height)
(4) width,height
(5) 调用了getComputedStyle()或者IE的currentStyle
回流一定伴随着重绘,重绘却可以单独出现
所以一般会有一些优化方案,如:
- 减少逐项更改样式,最好一次性更改style,或者将样式定义为class并一次性更新
- 避免循环操作dom,创建一个documentFragment或div,在它上面应用所有DOM操作,最后再把它添加到window.document
- 避免多次读取offset等属性。无法避免则将它们缓存到变量
- 将复杂的元素绝对定位或固定定位,使得它脱离文档流,否则回流代价会很高
注意:改变字体大小会引发回流
再来看一个示例:
复制代码
var s = document.body.style;
s.padding = "2px"; // 回流+重绘
s.border = "1px solid red"; // 再一次 回流+重绘
s.color = "blue"; // 再一次重绘
s.backgroundColor = "#ccc"; // 再一次 重绘
s.fontSize = "14px"; // 再一次 回流+重绘
// 添加node,再一次 回流+重绘
document.body.appendChild(document.createTextNode('abc!'));
简单层与复合层
上述中的渲染中止步于绘制,但实际上绘制这一步也没有这么简单,它可以结合复合层和简单层的概念来讲。
这里不展开,进简单介绍下:
- 可以认为默认只有一个复合图层,所有的DOM节点都是在这个复合图层下的
- 如果开启了硬件加速功能,可以将某个节点变成复合图层
- 复合图层之间的绘制互不干扰,由GPU直接控制
- 而简单图层中,就算是absolute等布局,变化时不影响整体的回流,但是由于在同一个图层中,仍然是会影响绘制的,因此做动画时性能仍然很低。而复合层是独立的,所以一般做动画推荐使用硬件加速
Chrome中的调试
Chrome的开发者工具中,Performance中可以看到详细的渲染过程:
资源外链的下载
上面介绍了html解析,渲染流程。但实际上,在解析html时,会遇到一些资源连接,此时就需要进行单独处理了
简单起见,这里将遇到的静态资源分为一下几大类(未列举所有):
- CSS样式资源
- JS脚本资源
- img图片类资源
遇到外链时的处理
当遇到上述的外链时,会单独开启一个下载线程去下载资源(http1.1中是每一个资源的下载都要开启一个http请求,对应一个tcp/ip链接)
遇到CSS样式资源
CSS资源的处理有几个特点:
- CSS下载时异步,不会阻塞浏览器构建DOM树
- 但是会阻塞渲染,也就是在构建render时,会等到css下载解析完毕后才进行(这点与浏览器优化有关,防止css规则不断改变,避免了重复的构建)
- 有例外,
media query声明的CSS是不会阻塞渲染的
遇到JS脚本资源
JS脚本资源的处理有几个特点:
- 阻塞浏览器的解析,也就是说发现一个外链脚本时,需等待脚本下载完成并执行后才会继续解析HTML
- 浏览器的优化,一般现代浏览器有优化,在脚本阻塞时,也会继续下载其它资源(当然有并发上限),但是虽然脚本可以并行下载,解析过程仍然是阻塞的,也就是说必须这个脚本执行完毕后才会接下来的解析,并行下载只是一种优化而已
- defer与async,普通的脚本是会阻塞浏览器解析的,但是可以加上defer或async属性,这样脚本就变成异步了,可以等到解析完毕后再执行
注意,defer和async是有区别的: defer是延迟执行,而async是异步执行。
简单的说(不展开):
async是异步执行,异步下载完毕后就会执行,不确保执行顺序,一定在onload前,但不确定在DOMContentLoaded事件的前或后defer是延迟执行,在浏览器看起来的效果像是将脚本放在了body后面一样(虽然按规范应该是在DOMContentLoaded事件前,但实际上不同浏览器的优化效果不一样,也有可能在它后面)
遇到img图片类资源
遇到图片等资源时,直接就是异步下载,不会阻塞解析,下载完毕后直接用图片替换原有src的地方
loaded和domcontentloaded
简单的对比:
- DOMContentLoaded 事件触发时,仅当DOM加载完成,不包括样式表,图片(譬如如果有async加载的脚本就不一定完成)
- load 事件触发时,页面上所有的DOM,样式表,脚本,图片都已经加载完成了