hashmap存储结构
HashMap 的数据存储结构是一个 Node<K,V> 数组,在(Java 7 中是 Entry<K,V> 数组,但结构相同)
public class HashMap<K,V> extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable {
链表升级红黑树阈值
static final int TREEIFY_THRESHOLD = 8;
// 红黑树退化链表阈值
static final int UNTREEIFY_THRESHOLD = 6;
//数组 升级红黑树阈值
static final int MIN_TREEIFY_CAPACITY = 64;
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
//链表
Node<K,V> next;
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
}
put解析
public V put(K key, V value) {
// 根据key进行hash
return putVal(hash(key), key, value, false, true);
}
//计算哈希值 与(&)、非(~)、或(|)、异或(^)
static final int hash(Object key) {
int h;
// 异或运算 右移16位 减少冲突概率
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
putVal
/**
* Implements Map.put and related methods.
*
* @param hash hash for key
* @param key the key
* @param value the value to put
* @param onlyIfAbsent if true, don't change existing value
* @param evict if false, the table is in creation mode.
* @return previous value, or null if none
*/
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
//(1)
//tab 临时的 数组据说这样目的性能高就是空间换时间,
//p 当前下标node,i(index)=下标
Node<K,V>[] tab; Node<K,V> p; int n, i;
//并判断数组是否为null,如果是则初始化数组,并得到数组⼤⼩n 默认16
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//根据hashcode 计算出对应的数组下标i
//如果等于空就创建一个新的node赋值到对应数组位置
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {// 如果当前下标位置存在元素,进行下一步判断
// e是当前下标的node
// k 数组查询出来的node k
Node<K,V> e; K k;
// 如果hash的 key 相同 或者 equals相同直接复制给e,后续代码中更新e 并返回old value
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
//如果改下标位置存在的元素的类型是 红黑树。
// 那么就会把新元素添加到红黑树中, 也会判断新key是否在红黑树中
// 如果存在返回该TreeNode,并在后续代码中更新value
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
// 否在改位置存的是一个链表,那就要把新元素查到链表中
// 因为要看当前链表的长度,所以要循环遍历
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
// 遍历到尾节点 将新元素封装成一个node对象插入到链表的尾部
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
// 并且链上的元素个数已经有8个了(不包括新节点) 将链表改造成红黑树
treeifyBin(tab, hash);
break;
}
// 如果链表中发现有相同的的hash 并且 key也相等就跳出循环
//
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
// 此时 p是老数据,e是新数据
p = e;
}
}
// 如果key存在相同 的 则更新 value 并返回old value
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
// 增加修改次数
++modCount;
if (++size > threshold)
// 判断是否需要扩容
resize();
afterNodeInsertion(evict);
return null;
}
resize 初始化|扩容
final Node<K,V>[] resize() {
// 数组初始化或者扩容
// 记录当前数组信息
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
// 扩容大小 2的幂次方
int oldThr = threshold;
// 记录新的数组大小 扩容阈值
int newCap, newThr = 0;
if (oldCap > 0) {
//判断超过了一定的阈值 就不扩容
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
//newCap 扩容一倍 小于 最大阈值 且 老的数组大于16 才会翻倍
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
// 表示要初始化数组但是用户制定了初始化容量
else { // zero initial threshold signifies using defaults
// 初始化数组用默认值
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
// 用新数组大小 计算数组的扩容阈值
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
// 根据计算好的数组大小 生成新的数组
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
// 如果是扩容 则把老的数据转移到新数组上
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
// 数组只有一个元素 直接赋值到新数组上面
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
// 如果是红黑树 则对红黑树转移
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
// 链表
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
// 低位链表
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
// 高位链表
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
将拆分的链表转移到新数组上
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
splite 红黑树迁移
final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
TreeNode<K,V> b = this;
// Relink into lo and hi lists, preserving order
TreeNode<K,V> loHead = null, loTail = null;
TreeNode<K,V> hiHead = null, hiTail = null;
int lc = 0, hc = 0;
// 由于红⿊树是有链表改造⽽成,所以链表其实还是存在的
// 对链表高低拆分
for (TreeNode<K,V> e = b, next; e != null; e = next) {
next = (TreeNode<K,V>)e.next;
e.next = null;
if ((e.hash & bit) == 0) {
if ((e.prev = loTail) == null)
loHead = e;
else
loTail.next = e;
loTail = e;
++lc;
}
else {
if ((e.prev = hiTail) == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
++hc;
}
}
//拆分之后如果存在低位链表,则看链表长度。如果小于等于 6,则把节点改成Node类型
if (loHead != null) {
if (lc <= UNTREEIFY_THRESHOLD)
tab[index] = loHead.untreeify(map);
else {
tab[index] = loHead;
if (hiHead != null) // (else is already treeified)
loHead.treeify(tab);
}
}
if (hiHead != null) {
if (hc <= UNTREEIFY_THRESHOLD)
tab[index + bit] = hiHead.untreeify(map);
else {
tab[index + bit] = hiHead;
if (loHead != null)
hiHead.treeify(tab);
}
}
}
treeifyBin 升级红黑树
final void treeifyBin(Node<K,V>[] tab, int hash) {
int n, index; Node<K,V> e;
// 如果数组 小于64 则会扩容,不会转换红黑树
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
resize();
else if ((e = tab[index = (n - 1) & hash]) != null) {
TreeNode<K,V> hd = null, tl = null;
do {
// 把链表改造成双向链表,且把节点类型改成TreeNode
TreeNode<K,V> p = replacementTreeNode(e, null);
if (tl == null)
hd = p;
else {
p.prev = tl;
tl.next = p;
}
tl = p;
} while ((e = e.next) != null);
// 改造成红黑树
if ((tab[index] = hd) != null)
hd.treeify(tab);
}
}
get
public V get(Object key) {
Node<K,V> e;
//计算hash 没值返回空
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
// 判断数组初始化 & 数组下标不等于空 进入
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
// 获取hash的元素
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
// 第一个值是的
return first;
if ((e = first.next) != null) {
// 红黑树查找
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
do {
// 链表查找
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
remove
public V remove(Object key) {
Node<K,V> e;
//计算hash 删除后的value 返回回去
return (e = removeNode(hash(key), key, null, false, true)) == null ?
null : e.value;
}
final Node<K,V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
Node<K,V>[] tab; Node<K,V> p; int n, index;
// 计算 数组是否为空,hash下标的元素是否为空
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1) & hash]) != null) {
Node<K,V> node = null, e; K k; V v;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
// 第一条数据是的返回
node = p;
else if ((e = p.next) != null) {
if (p instanceof TreeNode)
// 红黑树查找
node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
else {
do {
链表查找
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}
// 如果找到了 且 值相等 进入
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
// 红黑树删除
if (node instanceof TreeNode)
((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
else if (node == p)
tab[index] = node.next;
else
p.next = node.next;
++modCount;
--size;
afterNodeRemoval(node);
return node;
}
}
return null;
}