jdk8 HashMap 深度源码解析

58 阅读6分钟

hashmap存储结构

HashMap 的数据存储结构是一个 Node<K,V> 数组,在(Java 7 中是 Entry<K,V> 数组,但结构相同)

public class HashMap<K,V> extends AbstractMap<K,V>
    implements Map<K,V>, Cloneable, Serializable {  
链表升级红黑树阈值
static final int TREEIFY_THRESHOLD = 8;
// 红黑树退化链表阈值
static final int UNTREEIFY_THRESHOLD = 6;
//数组 升级红黑树阈值
static final int MIN_TREEIFY_CAPACITY = 64;

static class Node<K,V> implements Map.Entry<K,V> {
    final int hash;
    final K key;
    V value;
    //链表
    Node<K,V> next;

    Node(int hash, K key, V value, Node<K,V> next) {
        this.hash = hash;
        this.key = key;
        this.value = value;
        this.next = next;
    }
}

image.png

put解析

public V put(K key, V value) {
         // 根据key进行hash
    return putVal(hash(key), key, value, false, true);
}
//计算哈希值 与(&)、非(~)、或(|)、异或(^)
static final int hash(Object key) {
    int h;
    // 异或运算 右移16位 减少冲突概率
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

putVal

/**
 * Implements Map.put and related methods.
 *
 * @param hash hash for key
 * @param key the key
 * @param value the value to put
 * @param onlyIfAbsent if true, don't change existing value
 * @param evict if false, the table is in creation mode.
 * @return previous value, or null if none
 */
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
               boolean evict) {
               //(1) 
               //tab 临时的 数组据说这样目的性能高就是空间换时间,
               //p 当前下标node,i(index)=下标
    Node<K,V>[] tab; Node<K,V> p; int n, i;
     //并判断数组是否为null,如果是则初始化数组,并得到数组⼤⼩n 默认16
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
        //根据hashcode 计算出对应的数组下标i
        //如果等于空就创建一个新的node赋值到对应数组位置
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);
    else {// 如果当前下标位置存在元素,进行下一步判断
         // e是当前下标的node
         //  k 数组查询出来的node k
        Node<K,V> e; K k;
        // 如果hash的 key 相同 或者 equals相同直接复制给e,后续代码中更新e 并返回old value
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;
            //如果改下标位置存在的元素的类型是 红黑树。
            // 那么就会把新元素添加到红黑树中, 也会判断新key是否在红黑树中
            // 如果存在返回该TreeNode,并在后续代码中更新value
        else if (p instanceof TreeNode)
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        else {
              // 否在改位置存的是一个链表,那就要把新元素查到链表中
              // 因为要看当前链表的长度,所以要循环遍历
            for (int binCount = 0; ; ++binCount) {
                if ((e = p.next) == null) {
                 // 遍历到尾节点 将新元素封装成一个node对象插入到链表的尾部
                    p.next = newNode(hash, key, value, null);
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                    // 并且链上的元素个数已经有8个了(不包括新节点) 将链表改造成红黑树
                        treeifyBin(tab, hash);
                    break;
                }
                // 如果链表中发现有相同的的hash 并且 key也相等就跳出循环 
               // 
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                    // 此时 p是老数据,e是新数据
                p = e;
            }
        }
        // 如果key存在相同 的 则更新 value 并返回old value
        if (e != null) { // existing mapping for key
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
    }
    // 增加修改次数
    ++modCount;
    if (++size > threshold)
    // 判断是否需要扩容
        resize();
    afterNodeInsertion(evict);
    return null;
}

resize 初始化|扩容

final Node<K,V>[] resize() {
// 数组初始化或者扩容

     // 记录当前数组信息
    Node<K,V>[] oldTab = table;
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    // 扩容大小 2的幂次方
    int oldThr = threshold;
    
    // 记录新的数组大小 扩容阈值
    int newCap, newThr = 0;
    if (oldCap > 0) {
          //判断超过了一定的阈值 就不扩容
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        //newCap 扩容一倍 小于 最大阈值 且 老的数组大于16 才会翻倍
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold
    }
    else if (oldThr > 0) // initial capacity was placed in threshold
        newCap = oldThr;
        // 表示要初始化数组但是用户制定了初始化容量
    else {               // zero initial threshold signifies using defaults
       // 初始化数组用默认值
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    // 用新数组大小 计算数组的扩容阈值
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    @SuppressWarnings({"rawtypes","unchecked"})
    // 根据计算好的数组大小 生成新的数组
    Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;
    // 如果是扩容 则把老的数据转移到新数组上
    if (oldTab != null) {
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;
                // 数组只有一个元素 直接赋值到新数组上面
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                    // 如果是红黑树 则对红黑树转移
                else if (e instanceof TreeNode)
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // preserve order
                // 链表
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do {
                        next = e.next;
                        // 低位链表
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        // 高位链表
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);

                     将拆分的链表转移到新数组上
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}

splite 红黑树迁移

final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
    TreeNode<K,V> b = this;
    // Relink into lo and hi lists, preserving order
    TreeNode<K,V> loHead = null, loTail = null;
    TreeNode<K,V> hiHead = null, hiTail = null;
    int lc = 0, hc = 0;
// 由于红⿊树是有链表改造⽽成,所以链表其实还是存在的
// 对链表高低拆分
    for (TreeNode<K,V> e = b, next; e != null; e = next) {
        next = (TreeNode<K,V>)e.next;
        e.next = null;
        if ((e.hash & bit) == 0) {
            if ((e.prev = loTail) == null)
                loHead = e;
            else
                loTail.next = e;
            loTail = e;
            ++lc;
        }
        else {
            if ((e.prev = hiTail) == null)
                hiHead = e;
            else
                hiTail.next = e;
            hiTail = e;
            ++hc;
        }
    }
//拆分之后如果存在低位链表,则看链表长度。如果小于等于 6,则把节点改成Node类型
    if (loHead != null) {
        if (lc <= UNTREEIFY_THRESHOLD)
            tab[index] = loHead.untreeify(map);
        else {
            tab[index] = loHead;
            if (hiHead != null) // (else is already treeified)
                loHead.treeify(tab);
        }
    }
    if (hiHead != null) {
        if (hc <= UNTREEIFY_THRESHOLD)
            tab[index + bit] = hiHead.untreeify(map);
        else {
            tab[index + bit] = hiHead;
            if (loHead != null)
                hiHead.treeify(tab);
        }
    }
}

treeifyBin 升级红黑树

final void treeifyBin(Node<K,V>[] tab, int hash) {
    int n, index; Node<K,V> e;
    // 如果数组 小于64 则会扩容,不会转换红黑树
    if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
        resize();
    else if ((e = tab[index = (n - 1) & hash]) != null) {
        TreeNode<K,V> hd = null, tl = null;
        do {
           // 把链表改造成双向链表,且把节点类型改成TreeNode
            TreeNode<K,V> p = replacementTreeNode(e, null);
            if (tl == null)
                hd = p;
            else {
                p.prev = tl;
                tl.next = p;
            }
            tl = p;
        } while ((e = e.next) != null);
        // 改造成红黑树
        if ((tab[index] = hd) != null)
            hd.treeify(tab);
    }
}

get

public V get(Object key) {
    Node<K,V> e;
    //计算hash 没值返回空 
    return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node<K,V> getNode(int hash, Object key) {
    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
    // 判断数组初始化 & 数组下标不等于空 进入
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {
         // 获取hash的元素
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))
            // 第一个值是的
            return first;
        if ((e = first.next) != null) {
             // 红黑树查找
            if (first instanceof TreeNode)
                return ((TreeNode<K,V>)first).getTreeNode(hash, key);
            do {
            //   链表查找
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}

remove

public V remove(Object key) {
    Node<K,V> e;
   //计算hash 删除后的value 返回回去
    return (e = removeNode(hash(key), key, null, false, true)) == null ?
        null : e.value;
}
final Node<K,V> removeNode(int hash, Object key, Object value,
                           boolean matchValue, boolean movable) {
    Node<K,V>[] tab; Node<K,V> p; int n, index;
  // 计算 数组是否为空,hash下标的元素是否为空  
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (p = tab[index = (n - 1) & hash]) != null) {
        Node<K,V> node = null, e; K k; V v;
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
             // 第一条数据是的返回
            node = p;
        else if ((e = p.next) != null) {
            if (p instanceof TreeNode)
                 // 红黑树查找
                node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
            else {
                do {
                   链表查找
                    if (e.hash == hash &&
                        ((k = e.key) == key ||
                         (key != null && key.equals(k)))) {
                        node = e;
                        break;
                    }
                    p = e;
                } while ((e = e.next) != null);
            }
        }
          // 如果找到了 且 值相等 进入
        if (node != null && (!matchValue || (v = node.value) == value ||
                             (value != null && value.equals(v)))) {
            // 红黑树删除
            if (node instanceof TreeNode)
                ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
            else if (node == p)
                tab[index] = node.next;
            else
                p.next = node.next;
            ++modCount;
            --size;
            afterNodeRemoval(node);
            return node;
        }
    }
    return null;
}