interface 类型转换 类型断言

55 阅读5分钟

interface底层上是分别由两个struct实现:iface和eface。eface表示empty interface,不包含任何方法,iface 表示 non-empty interface,即包含方法的接口。 接口类型具体描述了一系列方法的集合,一个实现了这些方法的具体类型是这个接口类型的实例。

type eface struct {
  _type *_type
  data  unsafe.Pointer
}
type iface struct {
  tab  *itab
  data unsafe.Pointer
}
var a interface{}
log.Println(unsafe.Sizeof(a))//16

接口类型

type Reader interface {
    Read(p []byte) (n int, err error)
}

有些接口类型通过组合已有的接口来定义

type ReadWriter interface {
    Reader
    Writer
}

一个类型如果拥有一个接口需要的所有方法,那么这个类型就实现了这个接口

对于每一个命名过的具体类型T;它的一些方法的接收者是类型T本身然而另一些则是一个*T的指针。还记得在T类型的参数上调用一个*T的方法是合法的,只要这个参数是一个变量;编译器隐式的获取了它的地址。但这仅仅是一个语法糖:T类型的值不拥有所有*T指针的方法,这样它就可能只实现了更少的接口。

接口值

概念上讲一个接口的值,接口值,由两个部分组成,一个具体的类型和那个类型的值。它们被称为接口的动态类型和动态值。

一个接口的零值就是它的类型和值的部分都是nil

image.png

接口值可以使用==和!=来进行比较。两个接口值相等仅当它们都是nil值,或者它们的动态类型相同并且动态值也根据这个动态类型的==操作相等。因为接口值是可比较的,所以它们可以用在map的键或者作为switch语句的操作数。

然而,如果两个接口值的动态类型相同,但是这个动态类型是不可比较的(比如切片),将它们进行比较就会失败并且panic

一个包含nil指针的接口不是nil接口

func TestBasic(t *testing.T) {
   var buf *bytes.Buffer
   log.Println(buf == nil) //true
   f(buf)

}

func f(out io.Writer) {
   log.Println(out == nil) //false
   // ...do something...
   if out != nil {
      out.Write([]byte("done!\n")) //panic
   }
}

当main函数调用函数f时,它给f函数的out参数赋了一个bytes.Buffer的空指针,所以out的动态值是nil。然而,它的动态类型是bytes.Buffer,意思就是out变量是一个包含空指针值的非空接口(如图7.5),所以防御性检查out!=nil的结果依然是true。

image.png

error 接口

创建一个error最简单的方法就是调用errors.New函数,它会根据传入的错误信息返回一个新的error。整个errors包仅只有4行:

package errors

func New(text string) error { return &errorString{text} }

type errorString struct { text string }

func (e *errorString) Error() string { return e.text }

承载errorString的类型是一个结构体而非一个字符串,这是为了保护它表示的错误避免粗心(或有意)的更新。并且因为是指针类型*errorString满足error接口而非errorString类型,所以每个New函数的调用都分配了一个独特的和其他错误不相同的实例。我们也不想要重要的error例如io.EOF和一个刚好有相同错误消息的error比较后相等。

fmt.Println(errors.New("EOF") == errors.New("EOF")) // "false"

类型转换

go.dev/ref/spec#Co…

v:=T(x)

Type’s can only be converted between one another if the underlying data structure is the same.

类型断言

x.(T)被称为断言类型,这里x表示一个接口的类型和T表示一个类型。一个类型断言检查它操作对象的动态类型是否和断言的类型匹配。

第一种,如果断言的类型T是一个具体类型,然后类型断言检查x的动态类型是否和T相同。如果这个检查成功了,类型断言的结果是x的动态值,当然它的类型是T。

第二种,如果断言的类型T是一个接口类型,然后类型断言检查是否x的动态类型满足T。如果这个检查成功了,动态值没有获取到;这个结果仍然是一个有相同动态类型和值部分的接口值,但是结果为类型T。换句话说,对一个接口类型的类型断言改变了类型的表述方式,改变了可以获取的方法集合(通常更大),但是它保留了接口值内部的动态类型和值的部分

如果断言操作的对象是一个nil接口值,那么不论被断言的类型是什么这个类型断言都会失败。

如果类型断言出现在一个预期有两个结果的赋值操作中,例如如下的定义,这个操作不会在失败的时候发生panic,但是替代地返回一个额外的第二个结果,这个结果是一个标识成功与否的布尔值:

var w io.Writer = os.Stdout
f, ok := w.(*os.File)      // success:  ok, f == os.Stdout
b, ok := w.(*bytes.Buffer) // failure: !ok, b == nil

第二个结果通常赋值给一个命名为ok的变量。如果这个操作失败了,那么ok就是false值,第一个结果等于被断言类型的零值

当类型断言的操作对象是一个变量,你有时会看见原来的变量名重用而不是声明一个新的本地变量名,这个重用的变量原来的值会被覆盖(理解:其实是声明了一个同名的新的本地变量,外层原来的w不会被改变),如下面这样:

if w, ok := w.(*os.File); ok {
    // ...use w...
}

基于类型断言区别错误类型

类型分支

switch x.(type) {
case nil:       // ...
case int, uint: // ...
case bool:      // ...
case string:    // ...
default:        // ...
}
switch x := x.(type) { /* ... */ }

这里我们已经将新的变量也命名为x;和类型断言一样,重用变量名是很常见的。和一个switch语句相似地,一个类型分支隐式的创建了一个词法块,因此新变量x的定义不会和外面块中的x变量冲突。每一个case也会隐式的创建一个单独的词法块。