一、题目描述
给你一个字符串 word,由 不同 小写英文字母组成。
电话键盘上的按键与 不同 小写英文字母集合相映射,可以通过按压按键来组成单词。例如,按键 2 对应 ["a","b","c"],我们需要按一次键来输入 "a",按两次键来输入 "b",按三次键来输入 "c" 。
现在允许你将编号为 2 到 9 的按键重新映射到 不同 字母集合。每个按键可以映射到 任意数量 的字母,但每个字母 必须 恰好 映射到 一个 按键上。你需要找到输入字符串 word 所需的 最少 按键次数。
返回重新映射按键后输入 word 所需的 最少 按键次数。
下面给出了一种电话键盘上字母到按键的映射作为示例。注意 1,*,# 和 0 不 对应任何字母。
示例 1:
输入: word = "abcde"
输出: 5
解释: 图片中给出的重新映射方案的输入成本最小。
"a" -> 在按键 2 上按一次
"b" -> 在按键 3 上按一次
"c" -> 在按键 4 上按一次
"d" -> 在按键 5 上按一次
"e" -> 在按键 6 上按一次
总成本为 1 + 1 + 1 + 1 + 1 = 5 。
可以证明不存在其他成本更低的映射方案。
示例 2:
输入: word = "xycdefghij"
输出: 12
解释: 图片中给出的重新映射方案的输入成本最小。
"x" -> 在按键 2 上按一次
"y" -> 在按键 2 上按两次
"c" -> 在按键 3 上按一次
"d" -> 在按键 3 上按两次
"e" -> 在按键 4 上按一次
"f" -> 在按键 5 上按一次
"g" -> 在按键 6 上按一次
"h" -> 在按键 7 上按一次
"i" -> 在按键 8 上按一次
"j" -> 在按键 9 上按一次
总成本为 1 + 2 + 1 + 2 + 1 + 1 + 1 + 1 + 1 + 1 = 12 。
可以证明不存在其他成本更低的映射方案。
提示:
1 <= word.length <= 26word仅由小写英文字母组成。word中的所有字母互不相同。
二、思路分析
- 优先将字符放在按键的第一位
- 当8个按键都满了之后,从第二位开始
三、代码答案
/**
* @param {string} word
* @return {number}
*/
var minimumPushes = function (word) {
let step = 1
let content = 0
let num = 0
const MAX_KEYS = 8;
for (var i = 0; i < word.length; i++) {
content++
if (content > MAX_KEYS) {
step++
content = 1
}
num += step
}
return num
};