在已排序和旋转的数组中搜索元素
给定一个大小为 N 的已排序且旋转的数组 arr[] 和一个目标值,任务是在数组中找到目标值。
注意: 请在 O(logN) 时间内找到元素并假设所有元素都是不同的。
例子:
输入:arr[] = {5, 6, 7, 8, 9, 10, 1, 2, 3}, key = 3
输出:在索引 8 处找到
输入:arr[] = {5, 6, 7, 8, 9, 10, 1, 2, 3}, key = 30
输出:未找到
输入:arr[] = {30, 40, 50, 10, 20}, key = 10
输出:在索引 3 处找到
方法一(寻找发生旋转的枢轴):解决问题的主要思路如下。
- 对于排序(升序)和旋转的数组,枢轴元素是唯一一个其下一个元素小于它的元素。
- 根据上述思想使用二分查找,即可找到枢轴。
- 可以观察到,对于范围 [l, r] 中索引的搜索空间,其中中间索引为 mid,
- 如果旋转发生在左半部分,那么显然 l 处的元素将大于 mid 处的元素。
- 否则左半部分都是有序的,但 mid 处的元素将大于 r 处的元素。
- 找到枢轴后,将数组分为两个子数组。
- 现在各个子数组都是有序的,因此可以使用二分搜索来搜索目标元素。
请按照下面提到的步骤来实现这个想法:
- 使用二分查找找出枢轴点。我们将low指针设置在第一个数组元素,将high指针设置在最后一个数组元素。
- 我们将根据low和high计算mid。
- 如果 mid-1 处的值大于 mid 处的值,则返回mid-1作为枢轴。
- 否则,如果 mid+1 处的值小于 mid,则返回 mid 值作为枢轴。
- 否则,如果low位置元素值大于中位元素值,则考虑左半部分。否则,请考虑右半部分。
- 根据找到的枢轴将数组分成两个子数组。
- 现在对两个子数组之一调用二分搜索。
- 如果目标值大于第0个元素则在左侧数组中查找
- 否则在右侧数组中搜索。
- 如果在选定的子数组中找到该元素,则返回索引
- 否则返回-1。
更好地理解
考虑 arr[] = {3, 4, 5, 1, 2}, key = 1
枢轴查找:
low = 0,high = 4:
=> mid = 2
=> arr[mid] = 5, arr[mid + 1] = 1
=> arr[mid] > arr[mid+1],
=> 因此枢轴 = mid = 2
数组分为两部分 {3, 4, 5}, {1, 2}
现在根据条件和目标值,我们需要在{1, 2}部分中查找
我们将对 {1, 2} 应用二分搜索。
low= 3 ,high= 4 。
=> mid = 3
=> arr[mid] = 1 ,key = 1,因此 arr[mid] = key 匹配。
=> 所需索引 = mid = 3
因此该目标元素位于索引 3 处。
下面是上述方法的实现:
C++
// C++ Program to search an element
// in a sorted and pivoted array
#include <bits/stdc++.h>
using namespace std;
// Standard Binary Search function
int binarySearch(int arr[], int low, int high, int key)
{
if (high < low)
return -1;
int mid = (low + high) / 2;
if (key == arr[mid])
return mid;
if (key > arr[mid])
return binarySearch(arr, (mid + 1), high, key);
return binarySearch(arr, low, (mid - 1), key);
}
// Function to get pivot. For array 3, 4, 5, 6, 1, 2
// it returns 3 (index of 6)
int findPivot(int arr[], int low, int high)
{
// Base cases
if (high < low)
return -1;
if (high == low)
return low;
// low + (high - low)/2;
int mid = (low + high) / 2;
if (mid < high && arr[mid] > arr[mid + 1])
return mid;
if (mid > low && arr[mid] < arr[mid - 1])
return (mid - 1);
if (arr[low] >= arr[mid])
return findPivot(arr, low, mid - 1);
return findPivot(arr, mid + 1, high);
}
// Searches an element key in a pivoted
// sorted array arr[] of size n
int pivotedBinarySearch(int arr[], int n, int key)
{
int pivot = findPivot(arr, 0, n - 1);
// If we didn't find a pivot,
// then array is not rotated at all
if (pivot == -1)
return binarySearch(arr, 0, n - 1, key);
// If we found a pivot, then first compare with pivot
// and then search in two subarrays around pivot
if (arr[pivot] == key)
return pivot;
if (arr[0] <= key)
return binarySearch(arr, 0, pivot - 1, key);
return binarySearch(arr, pivot + 1, n - 1, key);
}
// Driver program to check above functions
int main()
{
// Let us search 3 in below array
int arr1[] = { 5, 6, 7, 8, 9, 10, 1, 2, 3 };
int n = sizeof(arr1) / sizeof(arr1[0]);
int key = 3;
// Function calling
cout << "Index of the element is : "
<< pivotedBinarySearch(arr1, n, key);
return 0;
}
C
/* Program to search an element in
a sorted and pivoted array*/
#include <stdio.h>
int findPivot(int[], int, int);
int binarySearch(int[], int, int, int);
/* Searches an element key in a pivoted
sorted array arrp[] of size n */
int pivotedBinarySearch(int arr[], int n, int key)
{
int pivot = findPivot(arr, 0, n - 1);
// If we didn't find a pivot,
// then array is not rotated at all
if (pivot == -1)
return binarySearch(arr, 0, n - 1, key);
// If we found a pivot, then first
// compare with pivot and then
// search in two subarrays around pivot
if (arr[pivot] == key)
return pivot;
if (arr[0] <= key)
return binarySearch(arr, 0, pivot - 1, key);
return binarySearch(arr, pivot + 1, n - 1, key);
}
/* Function to get pivot. For array
3, 4, 5, 6, 1, 2 it returns 3 (index of 6) */
int findPivot(int arr[], int low, int high)
{
// base cases
if (high < low)
return -1;
if (high == low)
return low;
int mid = (low + high) / 2; /*low + (high - low)/2;*/
if (mid < high && arr[mid] > arr[mid + 1])
return mid;
if (mid > low && arr[mid] < arr[mid - 1])
return (mid - 1);
if (arr[low] >= arr[mid])
return findPivot(arr, low, mid - 1);
return findPivot(arr, mid + 1, high);
}
/* Standard Binary Search function*/
int binarySearch(int arr[], int low, int high, int key)
{
if (high < low)
return -1;
int mid = (low + high) / 2; /*low + (high - low)/2;*/
if (key == arr[mid])
return mid;
if (key > arr[mid])
return binarySearch(arr, (mid + 1), high, key);
return binarySearch(arr, low, (mid - 1), key);
}
/* Driver program to check above functions */
int main()
{
// Let us search 3 in below array
int arr1[] = { 5, 6, 7, 8, 9, 10, 1, 2, 3 };
int n = sizeof(arr1) / sizeof(arr1[0]);
int key = 3;
printf("Index of the element is : %d",
pivotedBinarySearch(arr1, n, key));
return 0;
}
Java
/* Java program to search an element
in a sorted and pivoted array*/
import java.io.*;
class Main {
/* Searches an element key in a
pivoted sorted array arrp[]
of size n */
static int pivotedBinarySearch(int arr[], int n,
int key)
{
int pivot = findPivot(arr, 0, n - 1);
// If we didn't find a pivot, then
// array is not rotated at all
if (pivot == -1)
return binarySearch(arr, 0, n - 1, key);
// If we found a pivot, then first
// compare with pivot and then
// search in two subarrays around pivot
if (arr[pivot] == key)
return pivot;
if (arr[0] <= key)
return binarySearch(arr, 0, pivot - 1, key);
return binarySearch(arr, pivot + 1, n - 1, key);
}
/* Function to get pivot. For array
3, 4, 5, 6, 1, 2 it returns
3 (index of 6) */
static int findPivot(int arr[], int low, int high)
{
// base cases
if (high < low)
return -1;
if (high == low)
return low;
/* low + (high - low)/2; */
int mid = (low + high) / 2;
if (mid < high && arr[mid] > arr[mid + 1])
return mid;
if (mid > low && arr[mid] < arr[mid - 1])
return (mid - 1);
if (arr[low] >= arr[mid])
return findPivot(arr, low, mid - 1);
return findPivot(arr, mid + 1, high);
}
/* Standard Binary Search function */
static int binarySearch(int arr[], int low, int high,
int key)
{
if (high < low)
return -1;
/* low + (high - low)/2; */
int mid = (low + high) / 2;
if (key == arr[mid])
return mid;
if (key > arr[mid])
return binarySearch(arr, (mid + 1), high, key);
return binarySearch(arr, low, (mid - 1), key);
}
// main function
public static void main(String args[])
{
// Let us search 3 in below array
int arr1[] = { 5, 6, 7, 8, 9, 10, 1, 2, 3 };
int n = arr1.length;
int key = 3;
System.out.println(
"Index of the element is : "
+ pivotedBinarySearch(arr1, n, key));
}
}
Python
# Python Program to search an element
# in a sorted and pivoted array
# Searches an element key in a pivoted
# sorted array arrp[] of size n
def pivotedBinarySearch(arr, n, key):
pivot = findPivot(arr, 0, n-1)
# If we didn't find a pivot,
# then array is not rotated at all
if pivot == -1:
return binarySearch(arr, 0, n-1, key)
# If we found a pivot, then first
# compare with pivot and then
# search in two subarrays around pivot
if arr[pivot] == key:
return pivot
if arr[0] <= key:
return binarySearch(arr, 0, pivot-1, key)
return binarySearch(arr, pivot + 1, n-1, key)
# Function to get pivot. For array
# 3, 4, 5, 6, 1, 2 it returns 3
# (index of 6)
def findPivot(arr, low, high):
# base cases
if high < low:
return -1
if high == low:
return low
# low + (high - low)/2;
mid = int((low + high)/2)
if mid < high and arr[mid] > arr[mid + 1]:
return mid
if mid > low and arr[mid] < arr[mid - 1]:
return (mid-1)
if arr[low] >= arr[mid]:
return findPivot(arr, low, mid-1)
return findPivot(arr, mid + 1, high)
# Standard Binary Search function
def binarySearch(arr, low, high, key):
if high < low:
return -1
# low + (high - low)/2;
mid = int((low + high)/2)
if key == arr[mid]:
return mid
if key > arr[mid]:
return binarySearch(arr, (mid + 1), high,
key)
return binarySearch(arr, low, (mid - 1), key)
# Driver program to check above functions
# Let us search 3 in below array
if __name__ == '__main__':
arr1 = [5, 6, 7, 8, 9, 10, 1, 2, 3]
n = len(arr1)
key = 3
print("Index of the element is : ", \
pivotedBinarySearch(arr1, n, key))
C#
// C# program to search an element
// in a sorted and pivoted array
using System;
class main {
// Searches an element key in a
// pivoted sorted array arrp[]
// of size n
static int pivotedBinarySearch(int[] arr,
int n, int key)
{
int pivot = findPivot(arr, 0, n - 1);
// If we didn't find a pivot, then
// array is not rotated at all
if (pivot == -1)
return binarySearch(arr, 0, n - 1, key);
// If we found a pivot, then first
// compare with pivot and then
// search in two subarrays around pivot
if (arr[pivot] == key)
return pivot;
if (arr[0] <= key)
return binarySearch(arr, 0, pivot - 1, key);
return binarySearch(arr, pivot + 1, n - 1, key);
}
/* Function to get pivot. For array
3, 4, 5, 6, 1, 2 it returns
3 (index of 6) */
static int findPivot(int[] arr, int low, int high)
{
// base cases
if (high < low)
return -1;
if (high == low)
return low;
/* low + (high - low)/2; */
int mid = (low + high) / 2;
if (mid < high && arr[mid] > arr[mid + 1])
return mid;
if (mid > low && arr[mid] < arr[mid - 1])
return (mid - 1);
if (arr[low] >= arr[mid])
return findPivot(arr, low, mid - 1);
return findPivot(arr, mid + 1, high);
}
/* Standard Binary Search function */
static int binarySearch(int[] arr, int low,
int high, int key)
{
if (high < low)
return -1;
/* low + (high - low)/2; */
int mid = (low + high) / 2;
if (key == arr[mid])
return mid;
if (key > arr[mid])
return binarySearch(arr, (mid + 1), high, key);
return binarySearch(arr, low, (mid - 1), key);
}
// Driver Code
public static void Main()
{
// Let us search 3 in below array
int[] arr1 = { 5, 6, 7, 8, 9, 10, 1, 2, 3 };
int n = arr1.Length;
int key = 3;
Console.Write("Index of the element is : "
+ pivotedBinarySearch(arr1, n, key));
}
}
Javascript
<script>
/* JavaScript Program to search an element
in a sorted and pivoted array*/
/* Standard Binary Search function*/
function binarySearch( arr, low,
high, key){
if (high < low)
return -1;
let mid = Math.floor((low + high) / 2); /*low + (high - low)/2;*/
if (key == arr[mid])
return mid;
if (key > arr[mid])
return binarySearch(arr, (mid + 1), high, key);
// else
return binarySearch(arr, low, (mid - 1), key);
}
/* Function to get pivot. For array 3, 4, 5, 6, 1, 2
it returns 3 (index of 6) */
function findPivot( arr, low, high){
// base cases
if (high < low)
return -1;
if (high == low)
return low;
let mid = Math.floor((low + high) / 2); /*low + (high - low)/2;*/
if (mid < high && arr[mid] > arr[mid + 1])
return mid;
if (mid > low && arr[mid] < arr[mid - 1])
return (mid - 1);
if (arr[low] >= arr[mid])
return findPivot(arr, low, mid - 1);
return findPivot(arr, mid + 1, high);
}
/* Searches an element key in a pivoted
sorted array arr[] of size n */
function pivotedBinarySearch( arr, n, key){
let pivot = findPivot(arr, 0, n - 1);
// If we didn't find a pivot,
// then array is not rotated at all
if (pivot == -1)
return binarySearch(arr, 0, n - 1, key);
// If we found a pivot, then first compare with pivot
// and then search in two subarrays around pivot
if (arr[pivot] == key)
return pivot;
if (arr[0] <= key)
return binarySearch(arr, 0, pivot - 1, key);
return binarySearch(arr, pivot + 1, n - 1, key);
}
/* Driver program to check above functions */
// Let us search 3 in below array
let arr1 = [ 5, 6, 7, 8, 9, 10, 1, 2, 3 ];
let n = arr1.length;
let key = 3;
// Function calling
document.write( "Index of the element is : "
+ pivotedBinarySearch(arr1, n, key));
</script>
PHP
<?php
// PHP Program to search an element
// in a sorted and pivoted array
// Standard Binary Search function
function binarySearch($arr, $low,
$high, $key)
{
if ($high < $low)
return -1;
/*low + (high - low)/2;*/
$mid = floor($low + $high) / 2;
if ($key == $arr[$mid])
return $mid;
if ($key > $arr[$mid])
return binarySearch($arr, ($mid + 1),
$high, $key);
else
return binarySearch($arr, $low,
($mid -1), $key);
}
// Function to get pivot.
// For array 3, 4, 5, 6, 1, 2
// it returns 3 (index of 6)
function findPivot($arr, $low, $high)
{
// base cases
if ($high < $low)
return -1;
if ($high == $low)
return $low;
/*low + (high - low)/2;*/
$mid = ($low + $high)/2;
if ($mid < $high and $arr[$mid] >
$arr[$mid + 1])
return $mid;
if ($mid > $low and $arr[$mid] <
$arr[$mid - 1])
return ($mid - 1);
if ($arr[$low] >= $arr[$mid])
return findPivot($arr, $low,
$mid - 1);
return findPivot($arr, $mid + 1, $high);
}
// Searches an element key
// in a pivoted sorted array
// arr[] of size n */
function pivotedBinarySearch($arr, $n, $key)
{
$pivot = findPivot($arr, 0, $n - 1);
// If we didn't find a pivot,
// then array is not rotated
// at all
if ($pivot == -1)
return binarySearch($arr, 0,
$n - 1, $key);
// If we found a pivot,
// then first compare
// with pivot and then
// search in two subarrays
// around pivot
if ($arr[$pivot] == $key)
return $pivot;
if ($arr[0] <= $key)
return binarySearch($arr, 0,
$pivot - 1, $key);
return binarySearch($arr, $pivot + 1,
$n - 1, $key);
}
// Driver Code
// Let us search 3
// in below array
$arr1 = array(5, 6, 7, 8, 9, 10, 1, 2, 3);
$n = count($arr1);
$key = 3;
// Function calling
echo "Index of the element is : ",
pivotedBinarySearch($arr1, $n, $key);
?>
输出
Index of the element is : 8
时间复杂度:O(log N) 二分查找需要 log n 次比较才能找到元素。 辅助复杂度:O(1)
如何处理重复项? 请听下回分解