# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def closestNodes(self, root: Optional[TreeNode], queries: List[int]) -> List[List[int]]:
lis = []
# 遍历 存储结点值
q = deque([root])
while q:
cur = q.popleft()
lis.append(cur.val)
if cur.left:
q.append(cur.left)
if cur.right:
q.append(cur.right)
lis.sort()
res = []
for val in queries:
maxVal, minVal = -1, -1
idx = bisect_left(lis, val) #
if idx != len(lis):
maxVal = lis[idx]
if lis[idx] == val:
minVal = lis[idx]
res.append([minVal, maxVal])
continue
if idx != 0:
minVal = lis[idx - 1]
res.append([minVal, maxVal])
return res
改进: 二叉搜索数的中序 遍历 即可获得 有序
python3 解法
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def closestNodes(self, root: Optional[TreeNode], queries: List[int]) -> List[List[int]]:
lis = []
# 二叉搜索树 的中序遍历 值即为有序
def dfs(root):
if not root:
return
dfs(root.left)
lis.append(root.val)
dfs(root.right)
dfs(root)
res = []
for val in queries:
idx = bisect_left(lis, val) #
maxVal = lis[idx] if idx < len(lis) else -1
if idx == len(lis) or lis[idx] != val:
idx -= 1
minVal = lis[idx] if idx >= 0 else -1
res.append([minVal, maxVal])
return res
————————————
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<vector<int>> closestNodes(TreeNode* root, vector<int>& queries) {
vector<int> arr;
function<void(TreeNode*)> dfs = [&](TreeNode* root){
if (root == nullptr){
return;
}
dfs(root->left);
arr.emplace_back(root->val);
dfs(root->right);
};
dfs(root);
vector<vector<int>> res;
int n = arr.size();
for (int q : queries){
int idx = ranges::lower_bound(arr, q) - arr.begin();
int maxVal = idx < n ? arr[idx] : -1;
if (idx == n || arr[idx] != q){
--idx;
}
int minVal = idx >= 0 ? arr[idx] : -1;
res.push_back({minVal, maxVal});
}
return res;
}
};
C++ 解法
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
vector<int> arr;
void dfs(TreeNode* root){
if (root == nullptr){
return;
}
dfs(root->left);
arr.emplace_back(root->val);
dfs(root->right);
};
public:
vector<vector<int>> closestNodes(TreeNode* root, vector<int>& queries) {
dfs(root);
vector<vector<int>> res;
int n = arr.size();
for (int q : queries){
int idx = ranges::lower_bound(arr, q) - arr.begin();
int maxVal = idx < n ? arr[idx] : -1;
if (idx == n || arr[idx] != q){
--idx;
}
int minVal = idx >= 0 ? arr[idx] : -1;
res.push_back({minVal, maxVal});
}
return res;
}
};