# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def rangeSumBST(self, root: Optional[TreeNode], low: int, high: int) -> int:
res = 0
q = deque([root])
while q:
node = q.popleft()
if low <= node.val <= high:
res += node.val
if node.left:
q.append(node.left)
if node.right:
q.append(node.right)
return res
改进:
注意二叉搜索树的特点: 左子树任一节点的值 < 根节点 < 右子树任意节点的值。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def rangeSumBST(self, root: Optional[TreeNode], low: int, high: int) -> int:
res = 0
q = deque([root])
while q:
node = q.popleft()
if low <= node.val <= high:
res += node.val
if node.left and node.val > low: # 注意 若是 等于了,也无需再看 左子树了,因为是严格递增
q.append(node.left)
if node.right and node.val < high: # 右子树 有可能 有符合条件的结点
q.append(node.right)
return res
DFS 写法
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def rangeSumBST(self, root: Optional[TreeNode], low: int, high: int) -> int:
if not root:
return 0
x = root.val
if x > high:
return self.rangeSumBST(root.left, low, high) # 只需 递归 左子树
if x < low:
return self.rangeSumBST(root.right, low, high) # 只需递归 右子树
return x + self.rangeSumBST(root.left, low, high) + self.rangeSumBST(root.right, low, high)
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def rangeSumBST(self, root: Optional[TreeNode], low: int, high: int) -> int:
if not root:
return 0
x = root.val
res = x if low <= x <= high else 0
if x > low:
res += self.rangeSumBST(root.left, low, high) # 左子树 有可能 有符合条件的结点
if x < high:
res += self.rangeSumBST(root.right, low, high) # 右子树 有可能 有符合条件的结点
return res
C++
BFS
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int rangeSumBST(TreeNode* root, int low, int high) {
int res = 0;
queue<TreeNode*> q({root});
while (!q.empty()){
TreeNode* node = q.front(); q.pop();
if (node->val >= low && node->val <= high){
res += node->val;
}
if (node->left != nullptr && node->val > low){
q.push(node->left);
}
if (node->right != nullptr && node->val < high){
q.push(node->right);
}
}
return res;
}
};
DFS
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int rangeSumBST(TreeNode* root, int low, int high) {
if (root == nullptr){
return 0;
}
int x = root->val;
if (x > high){
return rangeSumBST(root->left, low, high);
}
if (x < low){
return rangeSumBST(root->right, low, high);
}
return x + rangeSumBST(root->left, low, high) +
rangeSumBST(root->right, low, high);
}
};