flink常见的实时去重方案:
- 基于状态后端
- 基于HyperLogLog
- 基于布隆过滤器(BloomFilter)
- 基于BitMap
- 基于外部数据库
bitmap以及Roaringbitmap原理
cloud.tencent.com/developer/a…
cloud.tencent.com/developer/a…
bitmap实现flink数据去重
此处采用的是Roaringbitmap,需要添加maven依赖
<dependency>
<groupId>org.roaringbitmap</groupId>
<artifactId>RoaringBitmap</artifactId>
<version>0.9.21</version>
</dependency>
完整的flink程序: 数据源部分还跟之前的一致,将process函数部分替换为bitmap对象进行去重
package others;
import com.google.common.base.Charsets;
import com.google.common.hash.Hashing;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.state.ValueState;
import org.apache.flink.api.common.state.ValueStateDescriptor;
import org.apache.flink.api.common.typeinfo.TypeHint;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.connector.source.util.ratelimit.RateLimiterStrategy;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.connector.datagen.source.DataGeneratorSource;
import org.apache.flink.connector.datagen.source.GeneratorFunction;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.ProcessFunction;
import org.apache.flink.util.Collector;
import org.roaringbitmap.RoaringBitmap;
import java.util.Random;
/**
* @projectName: wc
* @package: others
* @className: bitMapFilterDemo
* @author: NelsonWu
* @description: bitmap去重
* @date: 2024/2/25 15:16
* @version: 1.0
*/
public class bitMapFilterDemo {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1); // 设置全局并行度为1。
// 重写数据生成器的方法,生成0-9以内的随机数用于测试
// 输出为String类型:num:0,num:1,num:3,...num:9
Random random = new Random();
DataGeneratorSource<String> dataGeneratorSource = new DataGeneratorSource<>(
new GeneratorFunction<Long, String>() {
@Override
public String map(Long aLong) throws Exception {
int i = random.nextInt(10);
return "num:" + i;
}
},
20,
RateLimiterStrategy.perSecond(1),
Types.STRING
);
DataStreamSource<String> stringDataStreamSource = env.fromSource(
dataGeneratorSource,
WatermarkStrategy.noWatermarks(),
"data-generator"
);
KeyedStream<String, String> keyedStream = stringDataStreamSource.keyBy(
new KeySelector<String, String>() {
@Override
public String getKey(String value) throws Exception {
String[] split = value.split(":");
return split[1];
}
}
);
keyedStream.process(
new ProcessFunction<String, String>() {
private ValueState<RoaringBitmap> bitmapValueState;
@Override
public void open(Configuration parameters) throws Exception {
super.open(parameters);
RoaringBitmap bitmap = new RoaringBitmap();
ValueStateDescriptor<RoaringBitmap> descriptor = new ValueStateDescriptor<>(
"bloomFilterState",
TypeInformation.of(new TypeHint<RoaringBitmap>() {}),
bitmap);
bitmapValueState = getRuntimeContext().getState(descriptor);
}
@Override
public void processElement(String s, ProcessFunction<String, String>.Context context, Collector<String> collector) throws Exception {
String key = s.split(":")[1]; // 取出key用于判断以及插入状态后端
int IntKey = hash2Int(key);
RoaringBitmap bitmap = bitmapValueState.value(); // state中取出bitmap对象
if (!bitmap.contains(IntKey)){
bitmap.add(IntKey);
bitmapValueState.update(bitmap);
collector.collect(s);
}
}
}
).print();
env.execute("bitMapApplication");
}
public static int hash2Int(String value){
// 由于数据为字符串类型,bitmap只能处理int类型,这里利用哈希函数将字符串转换为int类型
return Hashing.murmur3_32().hashString(value, Charsets.UTF_8).asInt();
}
}
执行结果:
PS:主要去重部分逻辑跟布隆过滤器的写法一样。。从理论上bitmap的精确度要比布隆过滤器要高。