flink常见的实时去重方案:
- 基于状态后端
- 基于HyperLogLog
- 基于布隆过滤器(BloomFilter)
- 基于BitMap
- 基于外部数据库
基于布隆过滤器的flink实时去重
source部分还是跟上一篇一样采用0-9的随机数组成的字符串。使用BloomFilter,对中间结果的判断储存;使用ValueState存放布隆过滤器,以便更新布隆过滤器。具体实现如下:
package others;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.state.ValueState;
import org.apache.flink.api.common.state.ValueStateDescriptor;
import org.apache.flink.api.common.typeinfo.TypeHint;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.connector.source.util.ratelimit.RateLimiterStrategy;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.connector.datagen.source.DataGeneratorSource;
import org.apache.flink.connector.datagen.source.GeneratorFunction;
import org.apache.flink.shaded.guava30.com.google.common.hash.BloomFilter;
import org.apache.flink.shaded.guava30.com.google.common.hash.Funnels;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.KeyedProcessFunction;
import org.apache.flink.util.Collector;
import java.util.Random;
/**
* @projectName: wc
* @package: others
* @className: boolmFilterApp
* @author: NelsonWu
* @description: Flink中BloomFilter(布隆过滤器)和ValueState的结合使用对数据进行去重
* @date: 2024/2/25 0:06
* @version: 1.0
*/
public class boolmFilterApp {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1); // 设置全局并行度为1。
// 重写数据生成器的方法,生成0-9以内的随机数用于测试
// 输出为String类型:num:0,num:1,num:3,...num:9
Random random = new Random();
DataGeneratorSource<String> dataGeneratorSource = new DataGeneratorSource<>(
new GeneratorFunction<Long, String>() {
@Override
public String map(Long aLong) throws Exception {
int i = random.nextInt(10);
return "num:" + i;
}
},
20,
RateLimiterStrategy.perSecond(1),
Types.STRING
);
DataStreamSource<String> stringDataStreamSource = env.fromSource(
dataGeneratorSource,
WatermarkStrategy.noWatermarks(),
"data-generator"
);
KeyedStream<String, String> keyedStream = stringDataStreamSource.keyBy(
new KeySelector<String, String>() {
@Override
public String getKey(String value) throws Exception {
String[] split = value.split(":");
return split[1];
}
}
);
keyedStream.process(new KeyedProcessFunction<String, String, String>() {
public transient ValueState<BloomFilter> bloomFilterState;
@Override
public void open(Configuration parameters) throws Exception {
super.open(parameters);
// 布隆过滤器初始化
BloomFilter<CharSequence> bloomFilter = BloomFilter.create(Funnels.unencodedCharsFunnel(), 10000000);
ValueStateDescriptor<BloomFilter> descriptor = new ValueStateDescriptor<>(
"bloomFilterState",
TypeInformation.of(new TypeHint<BloomFilter>() {}),
bloomFilter);
bloomFilterState = getRuntimeContext().getState(descriptor);
}
@Override
public void processElement(String s, KeyedProcessFunction<String, String, String>.Context context, Collector<String> collector) throws Exception {
String key = s.split(":")[1]; // 取出key用于判断以及插入状态后端
BloomFilter bloomFilter = bloomFilterState.value();
if (!bloomFilter.mightContain(key)){
bloomFilter.put(key);
bloomFilterState.update(bloomFilter);
collector.collect(s);
}
}
}).print();
env.execute("bloomFilterApp");
}
}
执行结果:
输入20个数据,最终输出9个数据。
可以正常实现过滤数据(数据去重)。