AQS笔记一

45 阅读10分钟

1.AQS原理:

  1. Abstract:因为它并不知道上锁。模板方法设计模式即可,暴露出上锁逻辑
  2. Queue:线程阻塞队列
  3. Synchronizer:同步
  4. CAS+state:完成多线程抢锁逻辑
  5. Queue:完成抢不到锁的线程排队

AQS核心代码

获取锁的代码:

	public final void acquire(int arg) {
        if (!tryAcquire(arg) &&		//子类判定获取锁失败,那么这里取反,表示为true
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) //获取失败后添加到阻塞队列
            selfInterrupt();
    }

	//子类实现获取锁的逻辑,AQS并不知道你怎么用这个state来上锁的
	protected boolean tryAcquire(int arg) {
        throw new UnsupportedOperationException();
    }

释放锁的代码

	public final boolean release(int arg) {
        if (tryRelease(arg)) {
            //检查阻塞队列唤醒即可
            Node h = head;
            if (h != null && h.waitStatus != 0)
                unparkSuccessor(h);
            return true;
        }
        return false;
    }

	//子类实现获取锁的逻辑,AQS并不知道你怎么用这个state来上锁的
    protected boolean tryRelease(int arg) {
        throw new UnsupportedOperationException();
    }

总结:子类只需要实现自己的获取锁逻辑和释放锁逻辑即可,至于排队阻塞等待、唤醒机制均有AQS来完成。

2.ReentrantLock原理

概念:基于AQS实现的可重入锁实现类

核心变量和构造器

public class ReentrantLock() implements Lock, java.io.Serializable {
    private final Sync sync;
	public ReentrantLock() {
        sync = new NonfairSync();
    }

    public ReentrantLock(boolean fair) {
        //由fair变量来表明选择锁类型
        sync = fair ? new FairSync() : new NonfairSync();
    }

    static final class NonfairSync extends Sync {
        private static final long serialVersionUID = 7316153563782823691L;

        //由ReentrantLock调用获取锁
        final void lock() {
            //非公平锁,直接抢锁,不管有没有现成排队
            if (compareAndSetState(0, 1))
                //上锁成功,那么标识当前线程为获取锁的线程
                setExclusiveOwnerThread(Thread.currentThread());
            else
                //抢锁失败,进入AQS标准获取锁的流程
                acquire(1);
        }

        protected final boolean tryAcquire(int acquires) {
            //使用父类提供的获取非公平锁的方法获取锁
            return nonfairTryAcquire(acquires);
        }
    }
	abstract static class Sync extends AbstractQueuedSynchronizer {
       
        abstract void lock();

        //非公平锁获取锁方法
        final boolean nonfairTryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            int c = getState();
            //当执行到这里时,正好获取所得线程释放了锁,那么可以尝试抢锁
            if (c == 0) {
                //继续抢锁,不看有没有线程排队
                if (compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            //当前线程就是持有锁的线程,表明锁重入
            else if (current == getExclusiveOwnerThread()) {
                //利用state整形变量进行次数记录
                int nextc = c + acquires;
                //如果超过了int表示范围,表明符号溢出,所以抛出异常
                if (nextc < 0) // overflow
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            //返回false,表明需要AQS来将当前线程放入阻塞队列,然后进行阻塞操作等待唤醒获取锁
            return false;
        }

        //公平锁和非公平锁公用方法,因为在释放锁而对时候,并不区分是否公平
        protected final boolean tryRelease(int releases) {
            int c = getState() - releases;
            //如果当前线程不是上锁的线程,这是一个错误的决定,抛出异常
            if (Thread.currentThread() != getExclusiveOwnerThread())
                throw new IllegalMonitorStateException();
            boolean free = false;
            //不是重入锁,那么当前线程一定是释放锁了,然后我们把当前AQS用于保存当前锁对象的变量
            //ExclusiveOwnerThread设置为null,表示释放锁成功
            if (c == 0) {
                free = true;
                setExclusiveOwnerThread(null);
            }
            //注意:此时state全局变量没有改变,也就是意味着在setState()之前,没有别的线程能够获取锁
            //这时保证了以上的操作原子性
            setState(c);
            //告诉AQS,我释放锁成功了,你可以去唤醒正在等待锁的线程了
            return free;
        }

        protected final boolean isHeldExclusively() {
            return getExclusiveOwnerThread() == Thread.currentThread();
        }

        final ConditionObject newCondition() {
            return new ConditionObject();
        }

        final Thread getOwner() {
            return getState() == 0 ? null : getExclusiveOwnerThread();
        }

        final int getHoldCount() {
            return isHeldExclusively() ? getState() : 0;
        }

        final boolean isLocked() {
            return getState() != 0;
        }

        private void readObject(java.io.ObjectInputStream s)
            throws java.io.IOException, ClassNotFoundException {
            s.defaultReadObject();
            setState(0); // reset to unlocked state
        }
    }

    static final class FairSync extends Sync {
        //由ReentrantLock调用
        final void lock() {
            //没有尝试抢锁,直接进入AQS标准所流程
            acquire(1);
        }

        //AQS调用,子类自己实现获取锁的流程
        protected final boolean tryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            int c = getState();
            //此时正好获取锁的线程释放了锁
            if (c == 0) {
                //注意:这里和非公平锁的区别在于:hasQueuedPredecessors()看看队列是否有线程正在排队
                //没有的话再通过CAS抢锁
                if (!hasQueuedPredecessors() &&
                    compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            //当前线程就是获取锁的线程,那么这里是锁重入,和非公平锁操作一模一样
            else if (current == getExclusiveOwnerThread()) {
                int nextc = c + acquires;
                if (nextc < 0)
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }
    }
}

公平锁和非公平锁

公平锁会比非公平锁花更多的时间。

核心方法

1.获取锁操作

public void lock(){
	//直接通过sync同步器上锁
    sync.lock();
}

2.释放锁操作

    public void unlock() {
        sync.release(1);
    }

3.ReentrantWriteLock原理

用例:

将原来的锁,分割为两把锁:读锁、写锁。适用于读多写好的场景,读锁可以并发,写锁与其他锁互斥。写写互斥,写读互斥,读读兼容

public class ThreadDemo {

    static volatile int a;

    public static void readA(){
        System.out.println(a);
    }

    public static void writeA(){
        a++;
    }

    public static void main(String[] args) {

        ReentrantReadWriteLock reentrantReadWriteLock = new ReentrantReadWriteLock();
        ReentrantReadWriteLock.ReadLock readLock = reentrantReadWriteLock.readLock();
        ReentrantReadWriteLock.WriteLock writeLock = reentrantReadWriteLock.writeLock();

        Thread readThread = new Thread(() -> {
            readLock.lock();
            try {
                readA();
            } finally {
                readLock.unlock();
            }
        });
        Thread readThread2 = new Thread(() -> {
            readLock.lock();
            try {
                readA();
            } finally {
                readLock.unlock();
            }
        });
        Thread writeThread = new Thread(() -> {
            readLock.lock();
            try {
                writeA();
            } finally {
                readLock.unlock();
            }
        });
        readThread.start();
        readThread2.start();
        writeThread.start();

    }
}

核心变量和构造器

为什么不能进行锁升级。

  • 读锁为什么不能升级为写锁
  • 写锁为什么能升级为降级
  • 在Java中,读锁不能升级为写锁是为了保证数据的一致性和避免死锁的发生。如果读锁能够升级为写锁,那么就有可能带来数据的不一致性。因为读锁是允许多个线程同时获取的,如果一个线程在持有读锁的情况下升级为写锁,那么其他线程可能还在持有读锁并在读取数据,这时候如果进行写操作就可能导致数据被错误地修改。
  • 另外,允许读锁升级为写锁也会增加死锁的风险。如果一个线程在持有读锁的情况下等待获取写锁,而其他线程正在持有写锁,那么就会导致死锁的发生。
  • 写锁能够升级为降级是因为写锁是一种排它锁,在持有写锁的情况下,不允许其他线程同时持有读锁或写锁。当一个线程已经获取到写锁后,如果需要执行读操作,可以将写锁降级为读锁,然后其他线程可以获取读锁进行读操作。这样可以避免写锁的频繁获取和释放,提高了并发性能。

readLock和writeLock变量用于支撑以上描述的ReadWriteLock接口的读锁和写锁方法。通过构造方法的得知,读写锁对象的创建和用例均依赖于公平锁或者非公平锁同步器。

public class ReentrantReadWriteLock
        implements ReadWriteLock, java.io.Serializable {

    //读锁对象
    private final ReentrantReadWriteLock.ReadLock readerLock;

    //写锁对象
	private final ReentrantReadWriteLock.WriteLock writerLock;
    //同步器
    final Sync sync;

    //默认构造器,创建了非公平锁
    public ReentrantReadWriteLock() {
        this(false);
    }

    //根据fair变量,来选择创建不同的锁
    public ReentrantReadWriteLock(boolean fair) {
        sync = fair ? new FairSync() : new NonfairSync();
        //用同步器来创建读写锁对象
        readerLock = new ReadLock(this);
        writerLock = new WriteLock(this);
    }

    public ReentrantReadWriteLock.WriteLock writeLock() { return writerLock; }
    public ReentrantReadWriteLock.ReadLock  readLock()  { return readerLock; }

核心内部类

1.Sync类

核心变量和构造器

我们说读锁可以多个线程同时持有,而写锁只允许一个线程持有。此时我们称读锁--共享锁,写锁--互斥锁(排他锁)。然后我们在AQS中了解到一个变量state,它是32位的值,那么我们这里将其切割为高16位和低16位。

读锁和写锁二进制位怎么操作的

    abstract static class Sync extends AbstractQueuedSynchronizer {
        
    	//高16位用于表示读锁
        static final int SHARED_SHIFT   = 16;
        //用于高16位操作,加1,减1
        static final int SHARED_UNIT    = (1 << SHARED_SHIFT);
        //最大多锁量 11111111
        static final int MAX_COUNT      = (1 << SHARED_SHIFT) - 1;
        //用于获取低16位的值,0000 0000 1111 1111
        static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1;

        //获取当前持有读锁的线程数量
        static int sharedCount(int c)    { return c >>> SHARED_SHIFT; }
        //获取当前持有写锁的线程数量
        static int exclusiveCount(int c) { return c & EXCLUSIVE_MASK; }

        //高16位为所有读锁获取,那么我想知道每个线程对于读锁重入的次数?
        //采用ThreadLocal进行统计,每个线程自己统计自己的。
        static final class HoldCounter {
            int count = 0;
            final long tid = getThreadId(Thread.currentThread());
        }

        static final class ThreadLocalHoldCounter
            extends ThreadLocal<HoldCounter> {
            public HoldCounter initialValue() {
                return new HoldCounter();
            }
        }

        //创建ThreadLocal对象
        private transient ThreadLocalHoldCounter readHolds;

        //
        private transient HoldCounter cachedHoldCounter;

        private transient Thread firstReader = null;
        private transient int firstReaderHoldCount;

        Sync() {
            readHolds = new ThreadLocalHoldCounter();
            setState(getState()); // ensures visibility of readHolds
        }
    }

核心方法

tryAcquire获取写锁的流程

    	//有AQS调用,用于子类实现自己的上锁逻辑,和原有获取互斥锁保持一致
        protected final boolean tryAcquire(int acquires) {
        	//获取当前线程
            Thread current = Thread.currentThread();
        	//获取当前状态值和互斥锁的数量
            int c = getState();
        	//w:写锁的数量
            int w = exclusiveCount(c);
            if (c != 0) {
                //有线程获取到了读锁或者当前线程不是持有互斥锁的线程
                if (w == 0 || //有线程获取到了读锁
                    current != getExclusiveOwnerThread()) //有其他线程获取了写锁
                    //返回false,让AQS执行阻塞操作
                    return false;
                //走到这一定是current = getExclusiveOwnerThread()
                //处理写锁重入逻辑,而又由于写锁的数量保存在低16位,所以直接加就行了
                if (w + exclusiveCount(acquires) > MAX_COUNT)
                    throw new Error("Maximum lock count exceeded");
                // Reentrant acquire
                setState(c + acquires);
                return true;
            }
        	//既没有读锁,也没有写锁
            if (writerShouldBlock() ||	//由子类实现判断当前线程是否应该获取写锁
                !compareAndSetState(c, c + acquires)) //通过CAS抢写锁
                return false;
        	//获取写锁成功,那么将当前线程标识位获取互斥锁的线程对象
            setExclusiveOwnerThread(current);
            return true;
        }

tryAcquireShared获取读锁的流程

    	protected final int tryAcquireShared(int unused) {
        	//获取到当前线程对象
            Thread current = Thread.currentThread();
        	//获取到当前状态值
            int c = getState();
            if (exclusiveCount(c) != 0 &&		//有没有线程持有写锁
                getExclusiveOwnerThread() != current)	//如果有现成获取到了互斥锁,那么进一步看看是不是当前线程
                //不是当前线程,那么直接返回-1,告诉AQS获取共享锁失败
                return -1;
            int r = sharedCount(c);
            if (!readerShouldBlock() &&
                r < MAX_COUNT &&
                compareAndSetState(c, c + SHARED_UNIT)) {
                if (r == 0) {
                    firstReader = current;
                    firstReaderHoldCount = 1;
                } else if (firstReader == current) {
                    firstReaderHoldCount++;
                } else {
                    HoldCounter rh = cachedHoldCounter;
                    if (rh == null || rh.tid != getThreadId(current))
                        cachedHoldCounter = rh = readHolds.get();
                    else if (rh.count == 0)
                        readHolds.set(rh);
                    rh.count++;
                }
                return 1;
            }
            return fullTryAcquireShared(current);
        }

tryRelease释放写锁的流程

    	protected final boolean tryRelease(int releases) {
            if (!isHeldExclusively())
                throw new IllegalMonitorStateException();
            int nextc = getState() - releases;
            boolean free = exclusiveCount(nextc) == 0;
            if (free)
                setExclusiveOwnerThread(null);
            setState(nextc);
            return free;
        }

releaseShared释放读锁的流程




        protected final boolean tryReleaseShared(int unused) {
            Thread current = Thread.currentThread();
            if (firstReader == current) {
                // assert firstReaderHoldCount > 0;
                if (firstReaderHoldCount == 1)
                    firstReader = null;
                else
                    firstReaderHoldCount--;
            } else {
                HoldCounter rh = cachedHoldCounter;
                if (rh == null || rh.tid != getThreadId(current))
                    rh = readHolds.get();
                int count = rh.count;
                if (count <= 1) {
                    readHolds.remove();
                    if (count <= 0)
                        throw unmatchedUnlockException();
                }
                --rh.count;
            }
            for (;;) {
                int c = getState();
                int nextc = c - SHARED_UNIT;
                if (compareAndSetState(c, nextc))
                    return nextc == 0;
            }
        }

        private IllegalMonitorStateException unmatchedUnlockException() {
            return new IllegalMonitorStateException(
                "attempt to unlock read lock, not locked by current thread");
        }

        

        final int fullTryAcquireShared(Thread current) {
            HoldCounter rh = null;
            for (;;) {
                int c = getState();
                if (exclusiveCount(c) != 0) {
                    if (getExclusiveOwnerThread() != current)
                        return -1;

                } else if (readerShouldBlock()) {
                    if (firstReader == current) {
                    } else {
                        if (rh == null) {
                            rh = cachedHoldCounter;
                            if (rh == null || rh.tid != getThreadId(current)) {
                                rh = readHolds.get();
                                if (rh.count == 0)
                                    readHolds.remove();
                            }
                        }
                        if (rh.count == 0)
                            return -1;
                    }
                }
                if (sharedCount(c) == MAX_COUNT)
                    throw new Error("Maximum lock count exceeded");
                if (compareAndSetState(c, c + SHARED_UNIT)) {
                    if (sharedCount(c) == 0) {
                        firstReader = current;
                        firstReaderHoldCount = 1;
                    } else if (firstReader == current) {
                        firstReaderHoldCount++;
                    } else {
                        if (rh == null)
                            rh = cachedHoldCounter;
                        if (rh == null || rh.tid != getThreadId(current))
                            rh = readHolds.get();
                        else if (rh.count == 0)
                            readHolds.set(rh);
                        rh.count++;
                        cachedHoldCounter = rh; // cache for release
                    }
                    return 1;
                }
            }
        }

        final boolean tryWriteLock() {
            Thread current = Thread.currentThread();
            int c = getState();
            if (c != 0) {
                int w = exclusiveCount(c);
                if (w == 0 || current != getExclusiveOwnerThread())
                    return false;
                if (w == MAX_COUNT)
                    throw new Error("Maximum lock count exceeded");
            }
            if (!compareAndSetState(c, c + 1))
                return false;
            setExclusiveOwnerThread(current);
            return true;
        }

        final boolean tryReadLock() {
            Thread current = Thread.currentThread();
            for (;;) {
                int c = getState();
                if (exclusiveCount(c) != 0 &&
                    getExclusiveOwnerThread() != current)
                    return false;
                int r = sharedCount(c);
                if (r == MAX_COUNT)
                    throw new Error("Maximum lock count exceeded");
                if (compareAndSetState(c, c + SHARED_UNIT)) {
                    if (r == 0) {
                        firstReader = current;
                        firstReaderHoldCount = 1;
                    } else if (firstReader == current) {
                        firstReaderHoldCount++;
                    } else {
                        HoldCounter rh = cachedHoldCounter;
                        if (rh == null || rh.tid != getThreadId(current))
                            cachedHoldCounter = rh = readHolds.get();
                        else if (rh.count == 0)
                            readHolds.set(rh);
                        rh.count++;
                    }
                    return true;
                }
            }
        }

        protected final boolean isHeldExclusively() {
            return getExclusiveOwnerThread() == Thread.currentThread();
        }

        final ConditionObject newCondition() {
            return new ConditionObject();
        }

        final Thread getOwner() {
            // Must read state before owner to ensure memory consistency
            return ((exclusiveCount(getState()) == 0) ?
                    null :
                    getExclusiveOwnerThread());
        }

        final int getReadLockCount() {
            return sharedCount(getState());
        }

        final boolean isWriteLocked() {
            return exclusiveCount(getState()) != 0;
        }

        final int getWriteHoldCount() {
            return isHeldExclusively() ? exclusiveCount(getState()) : 0;
        }

        final int getReadHoldCount() {
            if (getReadLockCount() == 0)
                return 0;

            Thread current = Thread.currentThread();
            if (firstReader == current)
                return firstReaderHoldCount;

            HoldCounter rh = cachedHoldCounter;
            if (rh != null && rh.tid == getThreadId(current))
                return rh.count;

            int count = readHolds.get().count;
            if (count == 0) readHolds.remove();
            return count;
        }

       
        private void readObject(java.io.ObjectInputStream s)
            throws java.io.IOException, ClassNotFoundException {
            s.defaultReadObject();
            readHolds = new ThreadLocalHoldCounter();
            setState(0); // reset to unlocked state
        }

        final int getCount() { return getState(); }