【动态规划】day74_ 300. 最长递增子序列

53 阅读1分钟

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

 

示例 1:

输入: nums = [10,9,2,5,3,7,101,18]
输出: 4
解释: 最长递增子序列是 [2,3,7,101],因此长度为 4 。

示例 2:

输入: nums = [0,1,0,3,2,3]
输出: 4

示例 3:

输入: nums = [7,7,7,7,7,7,7]
输出: 1

 

提示:

  • 1 <= nums.length <= 2500
  • -104 <= nums[i] <= 104

 

进阶:

  • 你能将算法的时间复杂度降低到 O(n log(n)) 吗?

题解:

思路:dp

  • 状态转移方程:dp[i] = Math(dp[j])+1 0 < j < i, dp[i] > dp[j]

时间复杂度:O(n^2)

空间复杂度:O(n)

class Solution {
    public int lengthOfLIS(int[] nums) {
        int n = nums.length;
        int[] dp = new int[n];
        dp[0] = 1;
        int res = 1;
        for(int i = 1; i < n; i++){
            dp[i] = 1;
            for (int j = 0; j < i; j++) {
                if (nums[i] > nums[j]) {
                    dp[i] = Math.max(dp[i], dp[j] + 1);
                }
            }
            res = Math.max(res, dp[i]);
        }
        return res;
    }
}