RAID
不论是在单机时代还是分布式时代,大规模数据存储都需要解决几个核心问题,这些问题都是什么呢?总结一下,主要有以下三个方面。
1.数据存储容量的问题。既然大数据要解决的是数以 PB 计的数据计算问题,而一般的服务器磁盘容量通常 1~2TB,那么如何存储这么大规模的数据呢?
2.数据读写速度的问题。一般磁盘的连续读写速度为几十 MB,以这样的速度,几十 PB 的数据恐怕要读写到天荒地老。
3.数据可靠性的问题。磁盘大约是计算机设备中最易损坏的硬件了,通常情况一块磁盘使用寿命大概是一年,如果磁盘损坏了,数据怎么办?
在大数据技术出现之前,我们就需要面对这些关于存储的问题,对应的解决方案就是 RAID 技术。
RAID(独立磁盘冗余阵列)技术是将多块普通磁盘组成一个阵列,共同对外提供服务。主要是为了改善磁盘的存储容量、读写速度,增强磁盘的可用性和容错能力。在 RAID 之前,要使用大容量、高可用、高速访问的存储系统需要专门的存储设备,这类设备价格要比 RAID 的几块普通磁盘贵几十倍。RAID 刚出来的时候给我们的感觉像是一种黑科技,但其原理却不复杂。
目前服务器级别的计算机都支持插入多块磁盘(8 块或者更多),通过使用 RAID 技术,实现数据在多块磁盘上的并发读写和数据备份。
首先,我们先假设服务器有 N 块磁盘,RAID 0是数据在从内存缓冲区写入磁盘时,根据磁盘数量将数据分成 N 份,这些数据同时并发写入 N 块磁盘,使得数据整体写入速度是一块磁盘的 N 倍;读取的时候也一样,因此 RAID 0 具有极快的数据读写速度。但是 RAID 0 不做数据备份,N 块磁盘中只要有一块损坏,数据完整性就被破坏,其他磁盘的数据也都无法使用了。
RAID 1是数据在写入磁盘时,将一份数据同时写入两块磁盘,这样任何一块磁盘损坏都不会导致数据丢失,插入一块新磁盘就可以通过复制数据的方式自动修复,具有极高的可靠性。
结合 RAID 0 和 RAID 1 两种方案构成了RAID 10,它是将所有磁盘 N 平均分成两份,数据同时在两份磁盘写入,相当于 RAID 1;但是平分成两份,在每一份磁盘(也就是 N/2 块磁盘)里面,利用 RAID 0 技术并发读写,这样既提高可靠性又改善性能。不过 RAID 10 的磁盘利用率较低,有一半的磁盘用来写备份数据。
一般情况下,一台服务器上很少出现同时损坏两块磁盘的情况,在只损坏一块磁盘的情况下,如果能利用其他磁盘的数据恢复损坏磁盘的数据,这样在保证可靠性和性能的同时,磁盘利用率也得到大幅提升。
顺着这个思路,RAID 3可以在数据写入磁盘的时候,将数据分成 N-1 份,并发写入 N-1 块磁盘,并在第 N 块磁盘记录校验数据,这样任何一块磁盘损坏(包括校验数据磁盘),都可以利用其他 N-1 块磁盘的数据修复。
但是在数据修改较多的场景中,任何磁盘数据的修改,都会导致第 N 块磁盘重写校验数据。频繁写入的后果是第 N 块磁盘比其他磁盘更容易损坏,需要频繁更换,所以 RAID 3 很少在实践中使用。
相比 RAID 3,RAID 5是使用更多的方案。RAID 5 和 RAID 3 很相似,但是校验数据不是写入第 N 块磁盘,而是螺旋式地写入所有磁盘中。这样校验数据的修改也被平均到所有磁盘上,避免 RAID 3 频繁写坏一块磁盘的情况。
如果数据需要很高的可靠性,在出现同时损坏两块磁盘的情况下(或者运维管理水平比较落后,坏了一块磁盘但是迟迟没有更换,导致又坏了一块磁盘),仍然需要修复数据,这时候可以使用RAID 6。
RAID 6 和 RAID 5 类似,但是数据只写入 N-2 块磁盘,并螺旋式地在两块磁盘中写入校验信息(使用不同算法生成)。
看看 RAID 是如何解决我一开始提出的,关于存储的三个关键问题。
-
数据存储容量的问题。RAID 使用了 N 块磁盘构成一个存储阵列,如果使用 RAID 5,数据就可以存储在 N-1 块磁盘上,这样将存储空间扩大了 N-1 倍。
-
数据读写速度的问题。RAID 根据可以使用的磁盘数量,将待写入的数据分成多片,并发同时向多块磁盘进行写入,显然写入的速度可以得到明显提高;同理,读取速度也可以得到明显提高。不过,需要注意的是,由于传统机械磁盘的访问延迟主要来自于寻址时间,数据真正进行读写的时间可能只占据整个数据访问时间的一小部分,所以数据分片后对 N 块磁盘进行并发读写操作并不能将访问速度提高 N 倍。
-
数据可靠性的问题。使用 RAID 10、RAID 5 或者 RAID 6 方案的时候,由于数据有冗余存储,或者存储校验信息,所以当某块磁盘损坏的时候,可以通过其他磁盘上的数据和校验数据将丢失磁盘上的数据还原。
HDFS
这些年来,各种计算框架、各种算法、各种应用场景不断推陈出新,让人眼花缭乱,但是大数据存储的王者依然是 HDFS。 HDFS 是如何实现大数据高速、可靠的存储和访问的。
Hadoop 分布式文件系统 HDFS 的设计目标是管理数以千计的服务器、数以万计的磁盘,将这么大规模的服务器计算资源当作一个单一的存储系统进行管理,对应用程序提供数以 PB 计的存储容量,让应用程序像使用普通文件系统一样存储大规模的文件数据。
如何设计这样一个分布式文件系统?其实思路很简单。
理解 RAID 磁盘阵列存储,RAID 将数据分片后在多块磁盘上并发进行读写访问,从而提高了存储容量、加快了访问速度,并通过数据的冗余校验提高了数据的可靠性,即使某块磁盘损坏也不会丢失数据。将 RAID 的设计理念扩大到整个分布式服务器集群,就产生了分布式文件系统,Hadoop 分布式文件系统的核心原理就是如此。
和 RAID 在多个磁盘上进行文件存储及并行读写的思路一样,HDFS 是在一个大规模分布式服务器集群上,对数据分片后进行并行读写及冗余存储。因为 HDFS 可以部署在一个比较大的服务器集群上,集群中所有服务器的磁盘都可供 HDFS 使用,所以整个 HDFS 的存储空间可以达到 PB 级容量。
HDFS 的关键组件有两个,一个是 DataNode,一个是 NameNode。
DataNode 负责文件数据的存储和读写操作,HDFS 将文件数据分割成若干数据块(Block),每个 DataNode 存储一部分数据块,这样文件就分布存储在整个 HDFS 服务器集群中。应用程序客户端(Client)可以并行对这些数据块进行访问,从而使得 HDFS 可以在服务器集群规模上实现数据并行访问,极大地提高了访问速度。
在实践中,HDFS 集群的 DataNode 服务器会有很多台,一般在几百台到几千台这样的规模,每台服务器配有数块磁盘,整个集群的存储容量大概在几 PB 到数百 PB。
NameNode 负责整个分布式文件系统的元数据(MetaData)管理,也就是文件路径名、数据块的 ID 以及存储位置等信息,相当于操作系统中文件分配表(FAT)的角色。HDFS 为了保证数据的高可用,会将一个数据块复制为多份(缺省情况为 3 份),并将多份相同的数据块存储在不同的服务器上,甚至不同的机架上。这样当有磁盘损坏,或者某个 DataNode 服务器宕机,甚至某个交换机宕机,导致其存储的数据块不能访问的时候,客户端会查找其备份的数据块进行访问。
和 RAID 一样,数据分成若干数据块后存储到不同服务器上,可以实现数据大容量存储,并且不同分片的数据可以并行进行读 / 写操作,进而实现数据的高速访问。你可以看到,HDFS 的大容量存储和高速访问相对比较容易实现,但是 HDFS 是如何保证存储的高可用性呢?
- 数据存储故障容错
磁盘介质在存储过程中受环境或者老化影响,其存储的数据可能会出现错乱。HDFS 的应对措施是,对于存储在 DataNode 上的数据块,计算并存储校验和(CheckSum)。在读取数据的时候,重新计算读取出来的数据的校验和,如果校验不正确就抛出异常,应用程序捕获异常后就到其他 DataNode 上读取备份数据。
- 磁盘故障容错
如果 DataNode 监测到本机的某块磁盘损坏,就将该块磁盘上存储的所有 BlockID 报告给 NameNode,NameNode 检查这些数据块还在哪些 DataNode 上有备份,通知相应的 DataNode 服务器将对应的数据块复制到其他服务器上,以保证数据块的备份数满足要求。
3.DataNode 故障容错
DataNode 会通过心跳和 NameNode 保持通信,如果 DataNode 超时未发送心跳,NameNode 就会认为这个 DataNode 已经宕机失效,立即查找这个 DataNode 上存储的数据块有哪些,以及这些数据块还存储在哪些服务器上,随后通知这些服务器再复制一份数据块到其他服务器上,保证 HDFS 存储的数据块备份数符合用户设置的数目,即使再出现服务器宕机,也不会丢失数据。
4.NameNode 故障容错
NameNode 是整个 HDFS 的核心,记录着 HDFS 文件分配表信息,所有的文件路径和数据块存储信息都保存在 NameNode,如果 NameNode 故障,整个 HDFS 系统集群都无法使用;如果 NameNode 上记录的数据丢失,整个集群所有 DataNode 存储的数据也就没用了。
所以,NameNode 高可用容错能力非常重要。NameNode 采用主从热备的方式提供高可用服务。 集群部署两台 NameNode 服务器,一台作为主服务器提供服务,一台作为从服务器进行热备,两台服务器通过 ZooKeeper 选举,主要是通过争夺 znode 锁资源,决定谁是主服务器。而 DataNode 则会向两个 NameNode 同时发送心跳数据,但是只有主 NameNode 才能向 DataNode 返回控制信息。
正常运行期间,主从 NameNode 之间通过一个共享存储系统 shared edits 来同步文件系统的元数据信息。当主 NameNode 服务器宕机,从 NameNode 会通过 ZooKeeper 升级成为主服务器,并保证 HDFS 集群的元数据信息,也就是文件分配表信息完整一致。