2.4 死锁

163 阅读8分钟

2.4 死锁

2.4.1 什么是死锁

在并发环境下,各进程因竞争资源而造成的一种互相等待对方手里的资源,导致各进程都阻塞,都无法向前推进的现象,就是“死锁“。

发生死锁后若无外力干涉,这些进程都将无法向前推进。

2.4.2 进程死锁、饥饿、死循环的区别

  • 死锁:各进程互相等待对方手里的资源,导致各进程都阻塞,无法向前推进的现象。
  • 饥饿:由于长期得不到想要的资源,某进程无法向前推进的现象。比如:在短进程优先(SPF)算法中,若有源源不断的短进程到来,则长进程将一直得不到处理机,从而发生长进程“饥饿”。
  • 死循环:某进程执行过程中一直跳不出某个循环的现象。有时是因为程序逻辑bug 导致的,有时是程序员故意设计的。

图片1.png

2.4.3 死锁产生的必要条件

产生死锁必须同时满足一下四个条件,只要其中任一条件不成立,死锁就不会发生。

  • 互斥条件:只有对必须互斥使用的资源的争抢才会导致死锁(如哲学家的筷子、打印机设备)。像内存、扬声器这样可以同时让多个进程使用的资源是不会导致死锁的(因为进程不用阻塞等待这种资源)。
  • 不剥夺条件:进程所获得的资源在未使用完之前,不能由其他进程强行夺走,只能主动释放。
  • 请求 和 保持条件:进程已经保持了至少一个资源,但又提出了新的资源请求,而该资源又被其他进程占有,此时请求进程被阻塞,但又对自己已有的资源保持不放。
  • 循环等待条件:存在一种进程资源的循环等待链,链中的每一个进程已获得的资源同时被下一个进程所请求。

注意 : 发生死锁时一定有循环等待 , 但是发生循环等待时未必死锁 (循环等待是死锁的必要不充分条件)

如果同类资源数大于1,则即使有循环等待,也未必发生死锁。但如果系统中每类资源都只有一个,那循环等待就是死锁的充分必要条件了。

什么时候会发生死锁?

  1. 对系统资源的竞争。各进程对不可剥夺的资源(如打印机)的竞争可能引起死锁,对可剥夺的资源(CPU)的竞争是不会引起死锁的
  2. 进程推进顺序非法。请求和释放资源的顺序不当,也同样会导致死锁。例如,并发执行的进程P1、P2分别申请并占有了资源R1、R2,之后进程p1又紧接着申请资源R2,而进程p2又申请资源R1,两者会因为申请的资源被对方占有而阻塞,从而发生死锁。
  3. 信号量的使用不当也会造成死锁。如生产者-消费者问题中,如果实现互斥的P操作在实现同步的P操作之前,就有可能导致死锁。(可以把互斥信号量、同步信号量也看做是一种抽象的系统资源)

总之,对不可剥夺资源的不合理分配,可能导致死锁。

2.4.4 死锁的处理策略

  1. 预防死锁。破坏死锁产生的四个必要条件中的一个或几个。
  2. 避免死锁。用某种方法防止系统进入不安全状态,从而避免死锁(银行家算法)
  3. 死锁的检测和解除。允许死锁的发生,不过操作系统会负责检测出死锁的发生,然后采取某种措施解除死锁。

(1)预防死锁

图片10.png

(2)避免死锁

1.什么是安全序列?

图片18.png

  • 所谓安全序列,就是指如果系统按照这种序列分配资源,则每个进程都能顺利完成。只要能找出一个安全序列,系统就是安全状态。当然,安全序列可能有多个
  • 如果分配了资源之后,系统中找不出任何一个安全序列,系统就进入了不安全状态。这就意味着之后可能所有进程都无法顺利的执行下去。当然,如果有进程提前归还了一些资源,那系统也有可能重新回到安全状态,不过我们在分配资源之前总是要考虑到最坏的情况。
  • 如果系统处于安全状态,就一定不会发生死锁。如果系统进入不安全状态,则可能会发生死锁。(不安全状态未必就是发生了死锁,但发生死锁时一定是在不安全状态)
  • 因此可以在资源分配之前预先判断这次分配是否会导致系统进入不安全状态,以此决定是否答应资源分配请求。这也是“银行家算法”的核心思想。

2.银行家算法

思考:BAT 的例子中,只有一种类型的资源--钱,但是在计算机系统中会有多种多样的资源,应该怎么把算法拓展为多种资源的情况呢?

可以把单维的数字拓展为多维的向量。比如:系统中有5个进程 PO~ P4 ,3种资源R0~R2,初始数量为(10,5,7),则某一时刻的情况可表示如下:

图片21.png

方法: 将剩余资源与最多还需要的资源数对比,找出可满足的进程,将其加入安全序列,更新剩余可用资源值。

解析过程: 图片19.png 最终答案: 图片22.png 总结: 图片25.png 图片24.png

3. 死锁的检测和解除

1)死锁的检测

为了能对系统是否已发生了死锁进行检测,必须:

①用某种数据结构来保存资源的请求和分配信息;

②提供一种算法,利用上述信息来检测系统是否已进入死锁状态。

图片26.png

图片27.png

检测死锁的算法:

1)在资源分配图中,找出既不阻塞又不是孤点的进程Pi(即找出一条有向边与它相连,且该有向边对应资源的申请数量小于等于系统中已有空闲资源数量。如下图中,R1没有空闲资源,R2有一个空闲资源。若所有的连接该进程的边均满足上述条件,则这个进程能继续运行直至完成,然后释放它所占有的所有资源)。消去它所有的请求边和分配边,使之称为孤立的结点。在下图中P1 是满足这一条件的进程结点,于是将P1的所有边消去。

2)进程 i 所释放的资源,可以唤醒某些因等待这些资源而阻塞的进程,原来的阻塞进程可能变为非阻塞进程。在下图中,P2 就满足这样的条件。根据 1)中的方法进行一系列简化后,若能消去图中所有的边,则称该图是可完全简化的。

图片28.png图片29.png 如果按上述过程分析,最终能消除所有边,就称这个图是可完全简化的。此时一定没有发生死锁(相当于能找到一个安全序列)。

如果最终不能消除所有边,那么此时就是发生了死锁

图片30.png图片31.png

死锁定理:如果某时刻系统的资源分配图是不可完全简化的,那么此时系统死锁。

2)死锁的解除

一旦检测出死锁的发生,就应该立即解除死锁。

解除死锁的主要方法有 :

  1. 资源剥夺法。挂起(暂时放到外存上)某些死锁进程,并抢占它的资源,将这些资源分配给其他的死锁进程。但是应防止被挂起的进程长时间得不到资源而饥饿。
  2. 撤销进程法(或称终止进程法)。强制撤销部分、甚至全部死锁进程,并剥夺这些进程的资源。这种方式的优点是实现简单,但所付出的代价可能会很大。因为有些进程可能已经运行了很长时间,已经接近结束了,一旦被终止可谓功亏一篑,以后还得从头再来。
  3. 进程回退法。让一个或多个死锁进程回退到足以避免死锁的地步。这就要求系统要记录进程的历史信息,设置还原点。

应该选择对哪些进程动手?

  1. 进程优先级 (优先级低的)
  2. 已执行多长时间 (执行时间短的)
  3. 还要多久能完成 (时间长的进行处理)
  4. 进程已经使用了多少资源 (资源多的)
  5. 进程是交互式的还是批处理式的 (进行批处理的)