{
"version": "5.2.1",
"flags": {},
"shapes": [
{
"label": "cat",
"points": [
[
75.68627450980398,
62.54901960784309
],
[
693.3333333333334,
636.078431372549
]
],
"group_id": null,
"description": "",
"shape_type": "rectangle",
"flags": {}
},
{
"label": "leye",
"points": [
[
230.58823529411768,
388.0392156862744
]
],
"group_id": null,
"description": "",
"shape_type": "point",
"flags": {}
},
{
"label": "reye",
"points": [
[
373.72549019607857,
428.23529411764696
]
],
"group_id": null,
"description": "",
"shape_type": "point",
"flags": {}
}
],
"imagePath": "0.jpg",
"imageData": "",
"imageHeight": 1280,
"imageWidth": 720
}这些数据我该如何归一化呢
根据给出的数据,你可以按照以下步骤进行归一化处理:
1. 首先,根据图片的宽度和高度,将边界框的坐标和宽高进行归一化。图片的宽度为720,高度为1280。
对于"cat"标签的边界框:
- 中心点坐标:(x, y) = ((75.68627450980398 + 693.3333333333334) / 2, (62.54901960784309 + 636.078431372549) / 2) = (384.5098039215682, 349.31372549019605)
- 宽度:width = 693.3333333333334 - 75.68627450980398 = 617.6470588235294
- 高度:height = 636.078431372549 - 62.54901960784309 = 573.5294117647059
归一化后的值为:
- 中心点坐标:(x_normalized, y_normalized) = (384.5098039215682 / 720, 349.31372549019605 / 1280) = (0.5340137254901961, 0.2728170980392157)
- 宽度:width_normalized = log(617.6470588235294 / anchor_width)
- 高度:height_normalized = log(573.5294117647059 / anchor_height)
对于"leye"标签的点:
- 归一化后的值:(x_normalized, y_normalized) = (230.58823529411768 / 720, 388.0392156862744 / 1280) = (0.3206547843137255, 0.30348605098039214)
对于"reye"标签的点:
- 归一化后的值:(x_normalized, y_normalized) = (373.72549019607857 / 720, 428.23529411764696 / 1280) = (0.5190637362745098, 0.3341748399172797)
2. 对于类别,可以使用one-hot编码进行表示。根据给定的标签,"cat"的类别编码为[1, 0, 0]。
综上所述,你可以将给定的数据进行归一化处理得到以下结果:
{
"version": "5.2.1",
"flags": {},
"shapes": [
{
"label": "cat",
"points": [
[
0.5340137254901961,
0.2728170980392157
],
[
0.3206547843137255,
0.30348605098039214
]
],
"group_id": null,
"description": "",
"shape_type": "rectangle",
"flags": {}
},
{
"label": "leye",
"points": [
[
0.5190637362745098,
0.3341748399172797
]
],
"group_id": null,
"description": "",
"shape_type": "point",
"flags": {}
},
{
"label": "reye",
"points": [
[
0.5190637362745098,
0.3341748399172797
]
],
"group_id": null,
"description": "",
"shape_type": "point",
"flags": {}
}
],
"imagePath": "0.jpg",
"imageData": "",
"imageHeight": 1280,
"imageWidth": 720
}
请注意,这里仅给出了归一化的示例,对于YOLOv5的训练和推理,还需要考虑其他参数,例如先验框(anchor box)的宽度和高度,以及使用的模型配置等。