Elasticsearch(一)概述

45 阅读9分钟

ElasticSearch概述

Elaticsearch,简称为es, es是一个开源的高扩展的分布式全文检索引擎,它可以近乎实时的存储、检索数据;本身扩展性很好,可以扩展到上百台服务器,处理PB级别的数据。es也使用Java开发并使用 Lucene 作为其核心来实现所有索引和搜索的功能,但是它的目的是通过简单的 RESTful API 来隐藏 Lucene 的复杂性,从而让全文搜索变得简单。

据国际权威的数据库产品评测机构 DB Engines 的统计,在2016年1月,ElasticSearch已超过Solr等,成为排名第一的搜索引擎类应用。

为了增加学习的趣味性,我们来聊一聊 elasticsearch 的历史

历史

多年前,一个叫做Shay Banon的刚结婚不久的失业开发者,由于妻子要去伦敦学习厨师,他便跟着也去了。在他找工作的过程中,为了给妻子构建一个食谱的搜索引擎,他开始构建一个早期版本的Lucene。

直接基于Lucene工作会比较困难,所以Shay开始抽象Lucene代码以便Java程序员可以在应用中添加搜索功能。他发布了他的第一个开源项目,叫做“Compass”。

后来Shay找到一份工作,这份工作处在高性能和内存数据网格的分布式环境中,因此高性能的、实时的、分布式的搜索引擎也是理所当然需要的。然后他决定重写Compass库使其成为一个独立的服务叫做Elasticsearch。

第一个公开版本出现在2010年2月,在那之后Elasticsearch已经成为Github上最受欢迎的项目之一,代码贡献者超过300人。一家主营Elasticsearch的公司就此成立,他们一边提供商业支持一边开发新功能,不过 Elasticsearch 将永远开源且对所有人可用。

Shay的妻子依旧等待着她的食谱搜索……

ES 和 solr 的差别

学习 ES,我们免不了需要跟 solr 进行对比学习!下面我们分别来看看,它们之间具体的差别在哪里:

Elasticsearch 简介

Elasticsearch 是一个实时分布式搜索和分析引擎。它让你以前所未有的速度处理大数据成为可能。

它用于全文搜索、结构化搜索、分析以及将这三者混合使用

维基百科使用Elasticsearch提供全文搜索并高亮关键字,以及输入 实时搜索(search-asyou-type)和 搜索纠错(did-you-mean)等搜索建议功能。

英国卫报使用Elasticsearch结合用户日志和社交网络数据提供给他们的编辑以实时的反馈,以便及时了解公众对新发表的文章的回应。

StackOverflow结合全文搜索与地理位置查询,以及more-like-this功能来找到相关的问题和答案。

Github使用Elasticsearch检索1300亿行的代码。

但是 Elasticsearch 不仅用于大型企业,它还让像DataDog 以及 Klout 这样的创业公司将最初的想法变成可扩展的解决方案。

Elasticsearch可以在你的笔记本上运行,也可以在数以百计的服务器上处理PB级别的数据 。

Elasticsearch 是一个基于 Apache Lucene(TM) 的开源搜索引擎。无论在开源还是专有领域,Lucene可以被认为是迄今为止最先进、性能最好的、功能最全的搜索引擎库

但是,Lucene只是一个库。想要使用它,你必须使用Java来作为开发语言并将其直接集成到你的应用中,更糟糕的是,Lucene非常复杂,你需要深入了解检索的相关知识来理解它是如何工作的

Elasticsearch也使用Java开发并使用 Lucene 作为其核心来实现所有索引和搜索的功能,但是它的目的是通过简单的 RESTful API 来隐藏 Lucene 的复杂性,从而让全文搜索变得简单

Solr 简介

Solr 是 Apache 下的一个顶级开源项目,采用Java开发,它是基于 Lucene 的全文搜索服务器。Solr提供了比 Lucene 更为丰富的查询语言,同时实现了可配置、可扩展,并对索引、搜索性能进行了优化。

Solr可以独立运行,运行在Jetty、Tomcat 等这些Servlet容器中,Solr 索引的实现方法很简单,用 POST 方法向 Solr 服务器发送一个描述 Field 及其内容的 XML 文档,Solr根据 xml 文档添加、删除、更新索引。Solr 搜索只需要发送 HTTP GET 请求,然后对 Solr 返回Xml、json等格式的查询结果进行解析,组织页面布局。Solr不提供构建UI的功能,Solr提供了一个管理界面,通过管理界面可以查询Solr的配置和运行情况。

Solr是基于 lucene 开发企业级搜索服务器,实际上就是封装了lucene。

Solr是一个独立的企业级搜索应用服务器,它对外提供类似于Web-service的API接口。用户可以通过http请求,向搜索引擎服务器提交一定格式的文件,生成索引;也可以通过提出查找请求,并得到返回结果。

Lucene简介

Lucene是apache软件基金会4 jakarta项目组的一个子项目,是一个开放源代码的全文检索引擎工具包,但它不是一个完整的全文检索引擎,而是一个全文检索引擎的架构,提供了完整的查询引擎和索引引擎,部分文本分析引擎(英文与德文两种西方语言)。

Lucene的目的是为软件开发人员提供一个简单易用的工具包,以方便的在目标系统中实现全文检索的功能,或者是以此为基础建立起完整的全文检索引擎。

Lucene是一套用于全文检索和搜寻的开源程式库,由Apache软件基金会支持和提供。Lucene提供了一个简单却强大的应用程式接口,能够做全文索引和搜寻。在Java开发环境里Lucene是一个成熟的免费开源工具。就其本身而言,Lucene是当前以及最近几年最受欢迎的免费Java信息检索程序库。人们经常提到信息检索程序库,虽然与搜索引擎有关,但不应该将信息检索程序库与搜索引擎相混淆。

Lucene是一个全文检索引擎的架构。那什么是全文搜索引擎?

全文搜索引擎是名副其实的搜索引擎,国外具代表性的有Google、Fast/AllTheWeb、AltaVista、Inktomi、Teoma、WiseNut等,国内著名的有百度(Baidu)。它们都是通过从互联网上提取的各个网站的信息(以网页文字为主)而建立的数据库中,检索与用户查询条件匹配的相关记录,然后按一定的排列顺序将结果返回给用户,因此他们是真正的搜索引擎。

从搜索结果来源的角度,全文搜索引擎又可细分为两种,一种是拥有自己的检索程序(Indexer),俗称“蜘蛛”(Spider)程序或“机器人”(Robot)程序,并自建网页数据库,搜索结果直接从自身的数据库中调用,如上面提到的7家引擎;另一种则是租用其他引擎的数据库,并按自定的格式排列搜索结果,如 Lycos 引擎。

Elasticsearch和Solr比较

  1. 当单纯的对已有数据进行搜索时,Solr更快

image.png

  1. 当实时建立索引时,Solr会产生IO阻塞,查询性能较差,Elasticsearch具有明显的优势。

image.png

  1. 随着数据量的增加,Solr的搜索效率会变得更低,而Elasticsearch却没有明显的变化。

image.png

ElasticSearch vs Solr 总结

1、es基本是开箱即用,非常简单。Solr安装略微复杂一丢丢!

2、Solr 利用 Zookeeper 进行分布式管理,而 Elasticsearch 自身带有分布式协调管理功能

3、Solr 支持更多格式的数据,比如JSON、XML、CSV,而 Elasticsearch 仅支持json文件格式

4、Solr 官方提供的功能更多,而 Elasticsearch 本身更注重于核心功能,高级功能多有第三方插件提供,例如图形化界面需要kibana友好支撑

5、Solr 查询快,但更新索引时慢(即插入删除慢),用于电商等查询多的应用;

  • ES建立索引快(即查询慢),即实时性查询快,用于facebook新浪等搜索
  • Solr 是传统搜索应用的有力解决方案,但 Elasticsearch 更适用于新兴的实时搜索应用

6、Solr 比较成熟,有一个更大,更成熟的用户、开发和贡献者社区,而 Elasticsearch 相对开发维护者较少,更新太快,学习使用成本较高

所以如果我们在做技术选型的时候,具体选择哪一项技术,还需要根据不同的场景来进行结合选择。

哈哈哈,好像跑题了,下面我们就正式进入到 elasticsearch 的学习中!

首先我们先了解一下什么是全文搜索、结构化搜索、分析是什么?

全文搜索

全文搜索是指对文本数据进行搜索,并返回包含查询关键字的文档。Elasticsearch使用倒排索引的方式来支持全文搜索。在建立索引时,它会分析文本数据,将单词和它们在文档中的位置建立关联。用户查询时,Elasticsearch可以快速地定位包含关键字的文档。全文搜索适用于需要在大量文本数据中查找特定信息的场景。

结构化搜索

结构化搜索是指对结构化数据(如 JSON、XML)进行搜索。Elasticsearch允许你索引和查询结构化数据,而不仅仅是纯文本。你可以定义索引映射,明确定义每个字段的数据类型,并利用这些字段执行搜索。

分析

Elasticsearch还提供了强大的分析功能,用于对数据进行汇总、聚合和可视化。你可以执行各种聚合操作,如平均值、总和、最小值、最大值等,以及常见图表和仪表板。

搜索引擎应该具备哪些要求?

查询速度快

  • 高效的压缩算法
  • 快速地编码和解码速度

结果准确

  • BM25 算法
  • TF-IDF 算法

检索结果丰富

  • 召回率

面相海量数据,如何达到“搜索引擎”级别的查询效率?

索引

  • 帮助快速检索
  • 以数据结构为载体
  • 以文件的形式落地

Mysql 索引能解决大数据检索的问题吗?

  1. 索引往往字段很长,如果使用B+tree,树可能很深,IO很可怕
  2. 索引可能失效
  3. 精准度差

倒排索引的原理

image.png

倒排索引的数据结构

image.png