使用RPA通过GPT大模型AI Agent自动执行业务流程任务企业级应用开发实战:训练GPT模型的基本步骤

79 阅读16分钟

1.背景介绍

AI作为人工智能领域的火种,各行各业都在不断涌现各种新产品和服务。其中一个重点方向就是Chatbot,它能够模仿人类的语言能力、逻辑推理能力、决策能力,并且具有自然对话的特色,是一种新型的人机交互方式。Chatbot可以提高用户的工作效率、节约人力成本,并促进企业间合作。而使用Chatbot进行企业管理流程管理或商业决策自动化应用开发,则成为企业面临的需求。

为了实现Chatbot自动执行企业管理流程任务的目的,很多公司都开始探索用人工智能(AI)技术来辅助处理日常业务流程,通过把业务流转成有意义的文本数据,再由机器学习算法自动生成可执行的代码或规则脚本来完成指定任务。这种方式称为基于语音识别/理解(ASR/NLU)和自然语言生成(NLG)技术的智能助手(Assistant)。由于手动编写规则脚本既费时又易错,因此更希望通过深度学习(Deep Learning)方法来训练模型,将业务流程自动转换成计算机可读的、可执行的代码,以更高效、准确地完成任务。

这里,我将介绍使用英文文本生成技术(Generative Pre-Training,简称GPT)来训练模型的方法,这是目前最成功的语言模型之一。该模型主要用于预训练语言模型,可以捕捉到语言的语法和语义特征,并基于这些特征生成语言样本,从而达到在特定领域生成优质文本的效果。

以下是GPT的基本结构:

  • GPT是一个生成模型,其训练目标是在输入序列的上下文中,预测输出序列的一个字符或多个字符。
  • 在训练过程中,GPT会学习词嵌入向量(Word Embeddings),即每个单词对应的特征向量,这个向量包含了这个单词的上下文信息。
  • 在每一步训练中,GPT都会尝试生成一个字符或者多个字符,然后计算相应的损失函数。最后,GPT优化模型参数,使得所有样本的损失函数值都最小化。

除此之外,还有一些其它技术也被用来改善GPT模型的性能,包括:

  • 数据增强(Data Augmentation):对原始数据进行随机变换,增加模型的泛化能力。
  • 层次softmax(Hierarchical Softmax):把模型的输出分布分解成多层,使模型能够生成长句子。
  • 负采样(Negative Sampling):采用随机负例来减少模型对正例的依赖性。
  • 直接下降法(Gradient Descent Method):采用随机梯度下降法来迭代更新模型参数。
  • 梯度裁剪(Gradient Clipping):限制模型的梯度大小,防止梯度爆炸和消失。 等等。

接下来,我将通过五个步骤,教您如何用GPT训练模型,将业务流程自动转换成计算机可读的、可执行的代码。

2.核心概念与联系

(1)文本生成模型

GPT

GPT(Generative Pre-trained Transformer)是英文文本生成技术的最新研究成果,是目前最成功的语言模型之一。其结构简单、训练速度快、生成效果不错,适用于不同类型的任务,如文本生成、自动摘要、图像描述、视频注释等。

GPT模型由Transformer架构组成,即transformer-based模型,这也是目前最常用的文本生成模型。在训练阶段,GPT模型需要根据输入序列的上下文信息来预测输出序列的下一个字符。模型的输入是一系列的字符,输出是下一个字符或者多个字符。GPT模型通过重复堆叠相同的模块来实现长期记忆,并在训练中学习到词汇、语法和语义特征。

seq2seq模型

seq2seq模型是一种编码器-解码器模型,是一种典型的序列到序列模型。在训练seq2seq模型时,需要提供输入序列和输出序列两条信息,训练过程就是通过学习输入序列的信息来预测输出序列的信息。seq2seq模型经常用于机器翻译、文本摘要、文本纠错等任务。

seq2seq模型中的编码器模块将源序列的信息编码成固定长度的向量表示;解码器模块则根据编码器的输出和之前的解码结果生成输出序列的下一个字符或者词。

SeqGAN模型

SeqGAN(Sequence Generative Adversarial Networks),是一种基于GAN的生成模型,通过判别器判定生成的序列是否真实存在,在训练过程中引入了注意机制来帮助生成模型捕捉序列中的关键信息。SeqGAN模型通常用于序列生成,如音乐生成、图片生成等。

Pointer Generator模型

Pointer Generator模型是另一种生成模型,在训练过程中引入了指针网络,从而可以让模型根据已经生成的文本生成下一个词。Pointer Generator模型可以用于文本摘要、文本分类等任务。

(2)注意力机制

注意力机制是指在解码过程当中,模型只关注当前时间步的输入序列的某些片段而忽略其他片段。这样做可以增加模型的生成效果,防止模型陷入困境。Attention Mechanism可以分成三个部分:

  1. 查询项(Query Item):即从输入序列中选取出的一个片段,或者说是要生成的目标。
  2. 键项(Key Items):输入序列中的所有片段。
  3. 值项(Value Items):对应于键项的上下文信息。

使用注意力机制可以让模型注意到输入序列的某些片段,并集中精力生成目标序列的某些片段。相比于将所有的键项和值的项当作输入直接进行矩阵乘法运算,使用注意力机制可以只选择重要的键项和值项,这样就减少了计算量。

(3)负采样

负采样是一种降低模型过拟合的方法。在训练过程中,如果模型只能生成正例,而实际上还有一些负例存在,那么模型就会认为正例和负例之间没有明显的区分,模型的预测会受到负例的影响,导致模型的泛化能力变差。所以,一般情况下,采用负采样的方式,给模型更多的负例进行训练。具体来说,对于每个正例,模型还会随机抽取一些负例进行训练,这样既保证了正例的生成,又避免了过拟合。

(4)微调与蒸馏

微调(Fine Tuning)是指利用较小的预训练模型去进行下游任务的fine-tuning,目的是将其神经网络中的参数迁移到新的任务中,以得到更好的效果。比如,在图像分类任务中,用ImageNet预训练模型去进行微调,可以提升模型的分类精度。

蒸馏(Distillation)是指将大模型(teacher model)的预测结果直接告知小模型(student model),尽量使两个模型的预测结果一致。在蒸馏过程中,学生模型只学习大模型的输出和中间层的输出,即不学习分类层和线性层的参数。因此,蒸馏后的模型可以获得一个较好的效果,但速度却慢于前者。

3.核心算法原理和具体操作步骤以及数学模型公式详细讲解

(1)数据准备

首先,我们需要准备好我们需要训练的数据。这一步一般比较繁琐,但其实不需要太复杂的数据。由于GPT是一个生成模型,并不要求数据的标签,因此我们只需要准备一些文本文件即可。至于如何处理文本数据,可以使用许多开源工具,例如NLTK、SpaCy等进行文本清洗。

(2)训练GPT模型

训练GPT模型有两种方案,第一种是完全训练GPT模型,第二种是微调。

完全训练GPT模型

完全训练GPT模型的过程非常耗时,一般需要几天甚至几周的时间。我们需要准备一个足够大的带宽(带宽越大,训练速度越快)、GPU资源充足的服务器来运行训练任务。

  1. 配置环境:首先,我们需要配置好环境,安装必要的库。
  2. 创建GPT模型:然后,我们需要创建GPT模型。这里有一个命令行工具gpt-2-simple可以方便地创建GPT模型。
  3. 开始训练:最后,我们就可以开始训练我们的GPT模型了。这里有一个命令行工具gpt-2-simple可以轻松地启动训练任务。
from gpt_2_simple import run_gpt2

run_gpt2(model_name='124M',
         steps=1000, # 设置训练步数
         run_name='run1') # 设置训练名称

以上,我们就可以启动我们的GPT模型的训练任务。训练完成后,我们可以在output文件夹下找到我们训练生成的文本。

微调

微调(Fine Tuning)是指利用较小的预训练模型去进行下游任务的fine-tuning,目的是将其神经网络中的参数迁移到新的任务中,以得到更好的效果。比如,在图像分类任务中,用ImageNet预训练模型去进行微调,可以提升模型的分类精度。

微调的过程同样也非常耗时,一般需要几天甚至几周的时间。我们需要准备一个足够大的带宽、GPU资源充足的服务器来运行微调任务。

  1. 配置环境:首先,我们需要配置好环境,安装必要的库。
  2. 下载预训练模型:接着,我们需要下载预训练模型,这里有两种预训练模型可以供下载,分别是Small和Medium。
  3. 对预训练模型进行微调:然后,我们可以对预训练模型进行微调,修改模型架构,调整参数等。
  4. 开始训练:最后,我们就可以开始训练我们的微调模型了。这里有一个命令行工具gpt-2-simple可以轻松地启动训练任务。
from gpt_2_simple import finetune

finetune(dataset='./data.txt',
         model_name='124M',
         steps=1000, 
         restore_from='latest', 
         run_name='run1', 
         print_every=10, 
         sample_every=100, 
         save_every=1000, 
         only_train_transformer_layers=False)

以上,我们就可以启动我们的微调模型的训练任务。训练完成后,我们可以在output文件夹下找到我们训练生成的文本。

(3)训练过程详解

训练过程是GPT模型训练的一个重要环节,其目的是提高模型的生成质量和鲁棒性。训练过程中,GPT模型通过最大似然估计来拟合训练数据,包括源文本和目标文本,因此它的性能取决于训练数据的质量。

训练过程中,我们可以观察到损失值的变化曲线,如果损失值一直在下降,说明模型正在逐渐地优化,如果反而一直在上升,说明模型遇到了困难,出现了偏差。一般来说,当损失值开始上升的时候,模型的性能会出现下降,我们可以考虑减小学习率、重新训练或使用其他的优化算法来缓解这种情况。当损失值开始下降的时候,模型的性能会出现提升,但是模型可能已经过于自信,并开始产生过拟合。我们需要持续监控模型的表现,不断调整模型的参数以提高其性能。

另外,GPT模型一般不需要太大的批大小(batch size),但是内存使用情况可能会影响到训练速度。我们可以通过调整每一步训练的样本数量(num_steps)来控制模型所需的内存大小。训练过程中,如果出现内存不足的情况,我们可以适当减小训练样本数量。同时,GPT模型也可以在生成文本时并行处理多个样本,这可以有效地利用多核CPU或GPU资源。

(4)模型评价及其相关指标

模型评价是衡量模型好坏的重要指标。常用的模型评价指标有:

  1. 句子级别的平均损失(Sentence Level Average Loss):即计算模型在生成样本时的平均损失,可以用来评价模型生成的质量。
  2. BLEU Score:BLEU(Bilingual Evaluation Understudy)是一种比较文本生成任务的自动评估标准,可以衡量生成的句子与参考句子之间的相似程度。
  3. Perplexity:困惑度(Perplexity)是一个表示语言模型困难程度的指标,其值越小表示语言模型的生成质量越好。
  4. ROUGE Score:ROUGE(Recall-Oriented Understanding and Generation Evaluation)是另一种比较文本生成任务的自动评估标准,可以衡量生成的文档与参考文档之间的相似程度。

评价指标的选择也很重要,不同的指标可能会更好地衡量模型的好坏。但是,不同指标之间也存在一些常见的问题。例如,在测试BLEU Score时,我们需要确保模型所生成的句子都没有任何重复的词汇,否则计算出的BLEU Score会偏高。同样,测试PER和ROUGE Score时,我们也需要确保模型所生成的文档与参考文档中的词汇都没有重复的。

4.具体代码实例和详细解释说明

(1)GPT-2模型的训练代码示例

import openai
openai.api_key = "YOUR_API_KEY"

response = openai.Completion.create(
  engine="text-davinci-002",
  prompt="Input text:",
  max_tokens=100, 
  stop=["\n"], 
  n=5 # number of completions to generate
)

print("Completions:")
for i in range(len(response['choices'])):
    completion = response['choices'][i]['text']
    print("{}".format(completion))

以上代码的功能是使用OpenAI API生成文本,并返回5个候选文本,其中包括提示文本。

(2)训练GPT模型的完整例子

安装库

pip install tensorflow==2.4.1 keras==2.3.1 numpy pandas requests regex sentencepiece tokenizers nltk transformers gpt-2-simple

数据准备

import os

if not os.path.exists('./data'):
    os.makedirs('./data')
    
with open('data/book.txt', 'w') as f:
    f.write("""
        The Great Gatsby is a novel by American author F. Scott Fitzgerald about the Jazz Age in New York City during the 1920s. It tells the story of a young Jazz student named <NAME> (<NAME>), whose dream of becoming an actor came true after his father's death. After a loveless marriage, Scott moves into his mother's estate and works there until her retirement. Alone with his new employer, he falls in love with Elisabeth Northanger (Elizabeth Bennet), but her return is unexpectedly cut short when she dies from cancer shortly afterwards. He leaves for Paris where he meets and falls deeply in love with Beatrix Potter (Sophie German). Although they eventually part ways, their relationship still continues. In November 1925, Scott arrives in England and begins working on his acting career. He befriends Jewish teenager Pavel Kozlovsky and goes off to study at Cambridge University in the 1930s before going back to work.

        The Great Gatsby follows several stories set in New York City during the mid-1920s. These include events related to Scott's early days as a teenager, his family's history, and the effects of World War I and II on his life and relationships. The book also includes the efforts of Scott and Elisabeth to overcome personal challenges and pursue meaningful careers, such as acting and playing the piano. As the years go by, Scott becomes more involved with his artistic and professional work than ever before, which leads him to become increasingly frustrated with both his parents' constantly demanding restrictions on his time and his own ambitions. One day while returning home one night, he sees an elderly woman whom he longs for who seems to have something against him. He asks her what it is but only receives a brief smile. Scott then decides that this woman may want to get away from him or at least break up with him so he declines the proposal. When he returns home later that evening, he finds out that the woman has remarried, leaving a son and daughter behind them. Scott comes downstairs to meet them, shakes hands with them, and offers support for their future. Ultimately, the youngest child falls pregnant and spends three years with another man, leading to a string of misadventures in his life. However, the real heartbreaking moment comes when Scott realizes that his daughter's mother may have been involved in some way in the affair. Nevertheless, he remains determined to protect his sister from harm.

        While enjoying his freedom, Scott tries to find a way to live beyond his dissatisfactions with his family and society. One such attempt comes in the form of a roleplaying game called Dreamcatcher, based on the same premise as The Lord of the Rings films. This game involves players trying to solve mysteries involving themes of religion, morality, and ethics through the use of riddles and clues. Aided by his assistant Walter White, Scott and other characters seek to make Dreamcatcher as engaging and entertaining as possible. Throughout the course of the book, Scott makes several humorous comments about how much fun his work should be. 
    """)

with open('data/dog.txt', 'w') as f:
    f.write("""
        The domestic dog (Canis lupus familiaris when considered a distinct species) is a member of the wolf subfamily Canidae, the smallest of all terrestrial carnivores. Some breeds are small and agile, while others are larger, powerful hunters with striking physical characteristics. They are often kept as pets, guardians, or companions. Dogs vary widely in shape, size, color, behavior, and temperament. Male dogs' distinguishing mark is their strong rounded head, although females are usually darker and less rounded. The domestic dog acts territorially with standing calls and active defense, making them highly skilled fighters. Among the smaller breeds, the weimaraner is the most popular, followed closely by the german shepherd, poodle, and collie. The bulldog (Canis lupus familiaris) is a large and muscular breed known for its loyal nature and obedience training. Other well-known breeds include labradors, dalmatians, and schnauzer. All members of the domestic dog family share two traits in common: they have a soft thick coat, developed from hair, and quick reflexes. Both sexes require exercise and attention, especially if left unsupervised.
        
        Humans and other primates depend on dogs for companionship, play, and socialization. They provide crucial emotional support, social skills, and the opportunity to learn and grow together. In addition to their versatility, dogs have important physiological and behavioral advantages, including instinctive understanding and ability to train and improve mentally. They are capable of running a wide variety of stimuli, including painful environments, rapid movements, vibrations, and high intensities. Bred as independent individuals, dogs typically have few leaders or dominant roles in their lives. Instead, they tend to follow close and affectionate caretakers or follow a routine lead that seeks to minimize conflict and promote good breeding practices.
        
        There are many varieties of domestic dogs throughout the world, each suited to different habitats and uses. Some are used as pets or guardians, while others are kept as laboratory animals and are used primarily for research purposes. Domestic dogs were first domesticated around 7,000 years ago, though much of modern history has focused on cross-species interactions between humans and wild dogs. Currently, the global population of dogs is estimated at approximately 8 million, with more than half living in countries that make up more than 5% of the world's population.
        
        The domestic dog is one of the oldest vertebrates and is thought to date back to the Amorrhagus of Egyptian mythology in the year 5,000 BC. This was a piglet that roamed the desert during the Holocene period and eventually became extinct due to predation by hunting dogs. Modern knowledge of the origins of dogs dates back to ancient Roman times, when cultivation was limited to large patches and underground farms.
        
    """)

训练GPT模型

完全训练

from gpt_2_simple import gpt2

sess = gpt2.start_tf_sess()
gpt2.load_gpt2(sess)

filepaths = ['./data/book.txt', './data/dog.txt']
save_dir = './models/'

gpt2.finetune(sess,
              dataset=filepaths,
              model_name='124M',
              combine=True,
              run_name='run1',
              sample_every=100, 
              save_every=1000, 
              print_every=10, 
              learning_rate=0.0001,
              accumulate_gradients=1,
              batch_size=1,
              val_frac=0.1,
              num_epochs=10,
              nsamples=50,
              dropout=.5,
              top_k=40,
              temperature=0.7,
              prefix='<|im_sep|>