算法修炼Day 53|1143.最长公共子序列 ● 1035.不相交的线 ● 53. 最大子序和 动态规划

60 阅读1分钟
题目:1143. 最长公共子序列 - 力扣(LeetCode)
代码实现:
class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        // 两层for循环,记录最大值
        char[] ch1 = text1.toCharArray();
        char[] ch2 = text2.toCharArray();
        int[][] dp = new int[text1.length() + 1][text2.length() + 1];
        for (int i = 1; i <= ch1.length; i++) {
            for (int j = 1; j <= ch2.length; j++) {
                if (ch1[i - 1] - '0' == ch2[j - 1] - '0') {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[text1.length()][text2.length()];
    }
}
题目:1035. 不相交的线 - 力扣(LeetCode)
代码实现:
class Solution {
    public int maxUncrossedLines(int[] nums1, int[] nums2) {
        int[][] dp = new int[nums1.length + 1][nums2.length + 1];
        for (int i = 1; i <= nums1.length; i++) {
            for (int j = 1; j <= nums2.length; j++) {
                if (nums1[i - 1] == nums2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[nums1.length][nums2.length];
    }
}
题目:53. 最大子数组和 - 力扣(LeetCode)
代码实现:
class Solution {
    public int maxSubArray(int[] nums) {
        int sum = nums[0];
        int ans = nums[0];
        for (int i = 1; i < nums.length; i++) {
            if (sum >= 0) {
                sum += nums[i];
            } else {
                sum = nums[i];
            }
            ans = Math.max(sum, ans);
        }
        return ans;
    }
}


class Solution {
    public int maxSubArray(int[] nums) {
        int[] dp = new int[nums.length + 1];
        dp[0] = nums[0];
        int ans = dp[0];
        for (int i = 1; i <= nums.length; i++) {
            dp[i] = Math.max(dp[i - 1] + nums[i], nums[i]);
            ans = Math.max(ans, dp[i]);
        }
        return ans
    }
}