本阶段主要针对C++ 泛型编程 和 STL 技术做详细讲解,探讨C++更深层的使用.
1 模板
1.1 模板的概念
模板就是建立通用的模具,大大提高复用性 。
-
例如生活中的模板:一寸照片模板,PPT模板:
模板的特点:
- 模板不可以直接使用,它只是一个框架
-
模板的通用并不是万能的
1.2 函数模板
- C++另一种编程思想称为 **泛型编程,主要利用的技术就是模板
-
C++提供两种模板机制:函数模板和类模板
1.2.1 函数模板语法
函数模板作用:
-
建立一个通用函数,其函数返回值类型和形参类型可以不具体制定,用一个虚拟的类型来代表。
语法:
template<typename T>
#函数声明或定义
解释:
-
template:声明创建模板
-
typename:表面其后面的符号是一种数据类型,可以用class代替
-
T:通用的数据类型,名称可以替换,通常为大写字母
示例:
//交换整型函数
void swapInt(int& a, int& b) {
int temp = a;
a = b;
b = temp;
}
//交换浮点型函数
void swapDouble(double& a, double& b) {
double temp = a;
a = b;
b = temp;
}
//利用模板提供通用的交换函数,告诉编译器后面代码中紧跟着的T不要报错,T是一个通用数据类型
template<typename T>
void mySwap(T& a, T& b)
{
T temp = a;
a = b;
b = temp;
}
void test01()
{
int a = 10;
int b = 20;
//swapInt(a, b);
//利用模板实现交换
//1、自动类型推导
mySwap(a, b);
//2、显示指定类型
mySwap<int>(a, b);
cout << "a = " << a << endl;
cout << "b = " << b << endl;
}
int main() {
test01();
system("pause");
return 0;
}
总结:
- 函数模板利用关键字 template
- 使用函数模板有两种方式:自动类型推导、显示指定类型
-
模板的目的是为了提高复用性,将类型参数化
1.2.2 函数模板注意事项
注意事项:
- 自动类型推导:必须推导出一致的数据类型T,才可以使用
-
模板必须要确定出T的数据类型,才可以使用
示例:
//利用模板提供通用的交换函数
template<class T>
void mySwap(T& a, T& b)
{
T temp = a;
a = b;
b = temp;
}
// 1、自动类型推导,必须推导出一致的数据类型T,才可以使用
void test01()
{
int a = 10;
int b = 20;
char c = 'c';
mySwap(a, b); // 正确,可以推导出一致的T
//mySwap(a, c); // 错误,推导不出一致的T类型
}
// 2、模板必须要确定出T的数据类型,才可以使用
template<class T>
void func()
{
cout << "func 调用" << endl; //不能推导出T的数据类型
}
void test02()
{
//func(); //错误,模板不能独立使用,必须确定出T的类型
func<int>(); //利用显示指定类型的方式,给T一个类型,才可以使用该模板
}
int main() {
test01();
test02();
system("pause");
return 0;
}
1.2.3 函数模板案例
/**
* 案例描述:
* 利用函数模板封装一个排序的函数,可以对不同数据类型数组进行排序
* 排序规则从大到小,排序算法为选择排序
* 分别利用char数组和int数组进行测试
*/
//交换的函数模板
template<typename T>
void mySwap(T &a, T&b)
{
T temp = a;
a = b;
b = temp;
}
template<class T> // 也可以替换成typename
//利用选择排序,进行对数组从大到小的排序
void mySort(T arr[], int len)
{
for (int i = 0; i < len; i++)
{
int max = i; //最大数的下标
for (int j = i + 1; j < len; j++)
{
if (arr[max] < arr[j])
{
max = j;
}
}
if (max != i) //如果最大数的下标不是i,交换两者
{
mySwap(arr[max], arr[i]);
}
}
}
template<typename T>
void printArray(T arr[], int len) {
for (int i = 0; i < len; i++) {
cout << arr[i] << " ";
}
cout << endl;
}
void test01()
{
//测试char数组
char charArr[] = "bdcfeagh";
int num = sizeof(charArr) / sizeof(char);
mySort(charArr, num);
printArray(charArr, num);
}
void test02()
{
//测试int数组
int intArr[] = { 7, 5, 8, 1, 3, 9, 2, 4, 6 };
int num = sizeof(intArr) / sizeof(int);
mySort(intArr, num);
printArray(intArr, num);
}
int main() {
test01();
test02();
system("pause");
return 0;
}
1.2.4 普通函数与函数模板的区别
普通函数与函数模板区别:
- 普通函数调用时可以发生自动类型转换(隐式类型转换);
- 函数模板调用时,如果利用自动类型推导,不会发生隐式类型转换;
-
如果利用显示指定类型的方式,可以发生隐式类型转换。
示例:
//普通函数
int myAdd01(int a, int b)
{
return a + b;
}
//函数模板
template<class T>
T myAdd02(T a, T b)
{
return a + b;
}
//使用函数模板时,如果用自动类型推导,不会发生自动类型转换,即隐式类型转换
void test01()
{
int a = 10;
int b = 20;
char c = 'c';
cout << myAdd01(a, c) << endl; //正确,将char类型的'c'隐式转换为int类型 'c' 对应 ASCII码 99
//myAdd02(a, c); // 报错,使用自动类型推导时,不会发生隐式类型转换
myAdd02<int>(a, c); //正确,如果用显示指定类型,可以发生隐式类型转换
}
int main() {
test01();
system("pause");
return 0;
}
总结:建议使用显示指定类型的方式,调用函数模板,因为可以自己确定通用类型T
1.2.5 普通函数与函数模板的调用规则
调用规则如下:
- 如果函数模板和普通函数都可以实现,优先调用普通函数;
- 可以通过空模板参数列表来强制调用函数模板;
- 函数模板也可以发生重载;
-
如果函数模板可以产生更好的匹配,优先调用函数模板。
示例:
//普通函数与函数模板调用规则
void myPrint(int a, int b)
{
cout << "调用的普通函数" << endl;
}
template<typename T>
void myPrint(T a, T b)
{
cout << "调用的模板" << endl;
}
template<typename T>
void myPrint(T a, T b, T c)
{
cout << "调用重载的模板" << endl;
}
void test01()
{
//1、如果函数模板和普通函数都可以实现,优先调用普通函数
// 注意 如果告诉编译器 普通函数是有的,但只是声明没有实现,或者不在当前文件内实现,就会报错找不到
int a = 10;
int b = 20;
myPrint(a, b); //调用普通函数
//2、可以通过空模板参数列表来强制调用函数模板
myPrint<>(a, b); //调用函数模板
//3、函数模板也可以发生重载
int c = 30;
myPrint(a, b, c); //调用重载的函数模板
//4、 如果函数模板可以产生更好的匹配,优先调用函数模板
char c1 = 'a';
char c2 = 'b';
myPrint(c1, c2); //调用函数模板
}
int main() {
test01();
system("pause");
return 0;
}
总结:既然提供了函数模板,最好就不要提供普通函数,否则容易出现二义性
1.2.6 模板的局限性
例如:
//如果传入的a和b是一个数组,就无法实现了
template<class T>
void f(T a, T b)
{
a = b;
}
//如果T的数据类型传入的是像Person这样的自定义数据类型,也无法正常运行
template<class T>
void f(T a, T b)
{
if(a > b) { ... }
}
局限性: 模板的通用性并不是万能的
-
C++为了解决这种问题,提供模板的重载,可以为这些特定的类型提供具体化的模板
示例:
#include<iostream>
using namespace std;
#include <string>
class Person
{
public:
Person(string name, int age)
{
this->m_Name = name;
this->m_Age = age;
}
string m_Name;
int m_Age;
};
//普通函数模板
template<class T>
bool myCompare(T& a, T& b)
{
if (a == b)
{
return true;
}
else
{
return false;
}
}
//具体化,显示具体化的原型和定意思以template<>开头,并通过名称来指出类型
//具体化优先于常规模板
template<> bool myCompare(Person &p1, Person &p2)
{
if ( p1.m_Name == p2.m_Name && p1.m_Age == p2.m_Age)
{
return true;
}
else
{
return false;
}
}
void test01()
{
int a = 10;
int b = 20;
//内置数据类型可以直接使用通用的函数模板
bool ret = myCompare(a, b);
if (ret)
{
cout << "a == b " << endl;
}
else
{
cout << "a != b " << endl;
}
}
void test02()
{
Person p1("Tom", 10);
Person p2("Tom", 10);
//自定义数据类型,不会调用普通的函数模板
//可以创建具体化的Person数据类型的模板,用于特殊处理这个类型
bool ret = myCompare(p1, p2);
if (ret)
{
cout << "p1 == p2 " << endl;
}
else
{
cout << "p1 != p2 " << endl;
}
}
int main() {
test01();
test02();
system("pause");
return 0;
}
总结:
- 利用具体化的模板,可以解决自定义类型的通用化
-
学习模板并不是为了写模板,而是在STL能够运用系统提供的模板
1.3 类模板
1.3.1 类模板语法
类模板作用:
-
建立一个通用类,类中的成员 数据类型可以不具体制定,用一个虚拟的类型来代表。
语法:
template<typename T>
类
解释:
-
template --- 声明创建模板
-
typename --- 表面其后面的符号是一种数据类型,可以用class代替
-
T --- 通用的数据类型,名称可以替换,通常为大写字母
示例:
#include <string>
//类模板
template<class NameType, class AgeType>
class Person
{
public:
Person(NameType name, AgeType age)
{
this->mName = name;
this->mAge = age;
}
void showPerson()
{
cout << "name: " << this->mName << " age: " << this->mAge << endl;
}
public:
NameType mName;
AgeType mAge;
};
void test01()
{
// 指定NameType 为string类型,AgeType 为 int类型
Person<string, int>P1("孙悟空", 999);
P1.showPerson();
}
int main() {
test01();
system("pause");
return 0;
}
总结:类模板和函数模板语法相似,在声明模板template后面加类,此类称为类模板
1.3.2 类模板与函数模板区别
类模板与函数模板区别主要有两点:
- 类模板没有自动类型推导的使用方式;
-
类模板在模板参数列表中可以有默认参数,使用显示指定类属性类型。
示例:
#include <string>
//类模板
template<class NameType, class AgeType = int>
class Person
{
public:
Person(NameType name, AgeType age)
{
this->mName = name;
this->mAge = age;
}
void showPerson()
{
cout << "name: " << this->mName << " age: " << this->mAge << endl;
}
public:
NameType mName;
AgeType mAge;
};
//1、类模板没有自动类型推导的使用方式
void test01()
{
// Person p("孙悟空", 1000); // 错误 类模板使用时候,不可以用自动类型推导
Person <string ,int>p("孙悟空", 1000); //必须使用显示指定类型的方式,使用类模板
p.showPerson();
}
//2、类模板在模板参数列表中可以有默认参数
void test02()
{
Person <string> p("猪八戒", 999); //类模板中的模板参数列表 可以指定默认参数
p.showPerson();
}
int main() {
test01();
test02();
system("pause");
return 0;
}
1.3.3 类模板中成员函数创建时机
类模板中成员函数和普通类中成员函数创建时机是有区别的:
- 普通类中的成员函数一开始就可以创建;
-
类模板中的成员函数在调用时才创建。
示例:
class Person1
{
public:
void showPerson1()
{
cout << "Person1 show" << endl;
}
};
class Person2
{
public:
void showPerson2()
{
cout << "Person2 show" << endl;
}
};
template<class T>
class MyClass
{
public:
T obj;
//类模板中的成员函数,并不是一开始就创建的,而是在模板调用时再生成
void fun1() { obj.showPerson1(); }
void fun2() { obj.showPerson2(); }
};
void test11()
{
MyClass<Person1> m;
m.fun1();
//m.fun2();//编译会出错,说明函数调用才会去创建成员函数
}
int main() {
test11();
system("pause");
return 0;
}
1.3.4 类模板对象做函数参数
类模板实例化出的对象,向函数传参的方式,一共有三种传入方式:
- 指定传入的类型 --- 直接显示对象的数据类型
- 参数模板化 --- 将对象中的参数变为模板进行传递
-
整个类模板化 --- 将这个对象类型 模板化进行传递
示例:
#include <string>
//类模板
template<class NameType, class AgeType = int>
class Person
{
public:
Person(NameType name, AgeType age)
{
this->mName = name;
this->mAge = age;
}
void showPerson()
{
cout << "name: " << this->mName << " age: " << this->mAge << endl;
}
public:
NameType mName;
AgeType mAge;
};
//1、指定传入的类型
void printPerson1(Person<string, int> &p)
{
p.showPerson();
}
void test01()
{
Person <string, int >p("孙悟空", 100);
printPerson1(p);
}
//2、参数模板化
template <class T1, class T2>
void printPerson2(Person<T1, T2>&p)
{
p.showPerson();
cout << "T1的类型为: " << typeid(T1).name() << endl;
cout << "T2的类型为: " << typeid(T2).name() << endl;
}
void test02()
{
Person <string, int >p("猪八戒", 90);
printPerson2(p);
}
//3、整个类模板化
template<class T>
void printPerson3(T & p)
{
cout << "T的类型为: " << typeid(T).name() << endl;
p.showPerson();
}
void test03()
{
Person <string, int >p("唐僧", 30);
printPerson3(p);
}
int main() {
test01();
test02();
test03();
system("pause");
return 0;
}
总结:
- 通过类模板创建的对象,可以有三种方式向函数中进行传参
-
使用比较广泛是第一种:指定传入的类型
1.3.5 类模板与继承
当类模板碰到继承时,需要注意一下几点:
- 当子类继承的父类是一个类模板时,子类在声明的时候,要指定出父类中T的类型;
-
- 如果不指定,编译器无法给子类分配内存;(子类不是类模板)
-
- 如果想灵活指定出父类中T的类型,子类也需变为类模板。
示例:
template<class T>
class Base
{
T m;
};
//class Son:public Base //错误,c++编译需要给子类分配内存,必须知道父类中T的类型才可以向下继承
class Son :public Base<int> //必须指定一个类型
{
};
void test01()
{
Son c;
}
//类模板继承类模板 ,可以用T2指定父类中的T类型
template<class T1, class T2>
class Son2 :public Base<T2>
{
public:
Son2()
{
cout << typeid(T1).name() << endl;
cout << typeid(T2).name() << endl;
}
};
void test02()
{
Son2<int, char> child1;
}
int main() {
test01();
test02();
system("pause");
return 0;
}
1.3.6 类模板成员函数类外实现
类模板中成员函数类外实现时,需要加上模板参数列表。
示例:
#include <string>
//类模板中成员函数类外实现
template<class T1, class T2>
class Person
{
public:
//成员函数类内声明
Person(T1 name, T2 age);
void showPerson();
public:
T1 m_Name;
T2 m_Age;
};
//构造函数 类外实现
template<class T1, class T2>
Person<T1, T2>::Person(T1 name, T2 age)
{
this->m_Name = name;
this->m_Age = age;
}
//成员函数 类外实现
template<class T1, class T2>
void Person<T1, T2>::showPerson()
{
cout << "姓名: " << this->m_Name << " 年龄:" << this->m_Age << endl;
}
void test01()
{
Person<string, int> p("Tom", 20);
p.showPerson();
}
int main() {
test01();
system("pause");
return 0;
}
1.3.7 类模板分文件编写
问题:类模板中成员函数创建时机是在调用阶段,导致分文件编写时链接不到
解决:
- 解决方式一:直接包含.cpp源文件
-
解决方式二:将声明和实现写到同一个文件中,并更改后缀名为.hpp,hpp是约定的名称,并不是强制
示例:
- 解决方法一:包含cpp源文件
#pragma once
#include <iostream>
using namespace std;
#include <string>
template<class T1, class T2>
class Person {
public:
Person(T1 name, T2 age);
void showPerson();
public:
T1 m_Name;
T2 m_Age;
};
#include<iostream>
using namespace std;
#include "Person.h"
//构造函数 类外实现
template<class T1, class T2>
Person<T1, T2>::Person(T1 name, T2 age)
{
this->m_Name = name;
this->m_Age = age;
}
//成员函数 类外实现
template<class T1, class T2>
void Person<T1, T2>::showPerson()
{
cout << "姓名: " << this->m_Name << " 年龄:" << this->m_Age << endl;
}
#include <iostream>
using namespace std;
//#include "Person.h"
#include "Person.cpp" //解决方式1,包含cpp源文件
void test13()
{
Person<string, int> p("Tom", 10);
p.showPerson();
}
int main() {
test13();
system("pause");
return 0;
}
- 解决方式二:将声明和实现写到一起。
#pragma once
#include <iostream>
using namespace std;
#include <string>
template<class T1, class T2>
class Person {
public:
Person(T1 name, T2 age);
void showPerson();
public:
T1 m_Name;
T2 m_Age;
};
//构造函数 类外实现
template<class T1, class T2>
Person<T1, T2>::Person(T1 name, T2 age)
{
this->m_Name = name;
this->m_Age = age;
}
//成员函数 类外实现
template<class T1, class T2>
void Person<T1, T2>::showPerson()
{
cout << "姓名: " << this->m_Name << " 年龄:" << this->m_Age << endl;
}
#include <iostream>
using namespace std;
//解决方式2,将声明和实现写到一起,文件后缀名改为.hpp
#include "Person.hpp"
void test14()
{
Person<string, int> p("Tom", 10);
p.showPerson();
}
int main() {
test14();
system("pause");
return 0;
}
总结:主流的解决方式是第二种,将类模板成员函数写到一起,并将后缀名改为.hpp
1.3.8 类模板与友元
全局函数做友元,且全局函数使用模板类做参数列表,有两种实现方式:
- 全局函数类内实现 - 直接在类内声明友元即可
- 全局函数类外实现 - 需要提前让编译器知道全局函数的存在
示例:
- 类内实现
template<class T1, class T2>
class Person
{
//1、全局函数配合友元 类内实现
friend void printPerson(Person<T1, T2>& p)
{
cout << "姓名: " << p.m_Name << " 年龄:" << p.m_Age << endl;
}
public:
Person(T1 name, T2 age)
{
this->m_Name = name;
this->m_Age = age;
}
private:
T1 m_Name;
T2 m_Age;
};
//1、全局函数在类内实现
void test15()
{
Person <string, int >p("Tom", 20);
printPerson(p);
}
int main() {
test15();
system("pause");
return 0;
}
- 类外实现
//提前让编译器知道Person类存在
template<class T1, class T2> class Person;
//类外实现(普通函数成名)
//1)因为长得像函数模板的语法实现,需要函数声明加空模板参数列表;
//2)因为是全局函数的类外实现,需要让编译器提前知道这个函数存在。
template<class T1, class T2>
void printPerson2(Person<T1, T2>& p)
{
cout << "类外实现 ---- 姓名: " << p.m_Name << " 年龄:" << p.m_Age << endl;
}
template<class T1, class T2>
class Person
{
//2、全局函数配合友元 加空模板参数列表“<>”
friend void printPerson2<>(Person<T1, T2>& p);
public:
Person(T1 name, T2 age)
{
this->m_Name = name;
this->m_Age = age;
}
private:
T1 m_Name;
T2 m_Age;
};
//全局函数在类外实现
void test16()
{
Person <string, int >p("Jerry", 30);
printPerson2(p);
}
int main() {
test16();
system("pause");
return 0;
}
总结:建议全局函数做类内实现,用法简单,而且编译器可以直接识别
2 STL初识
2.1 STL的诞生
- 长久以来,软件界一直希望建立一种可重复利用的东西 ;
- C++的面向对象和泛型编程思想,目的就是复用性的提升 ;
- 大多情况下,数据结构和算法都未能有一套标准,导致被迫从事大量重复工作 ;
- 为了建立数据结构和算法的一套标准,诞生了STL。
2.2 STL基本概念
- STL(Standard Template Library,标准模板库)
- STL 从广义上分为: 容器(container)、 算法(algorithm) 、迭代器(iterator)
- 容器和算法之间通过迭代器进行无缝连接。
-
STL 几乎所有的代码都采用了模板类或者模板函数
2.3 STL六大组件
STL大体分为六大组件,分别是:****
- 容器:各种数据结构,如vector、list、deque、set、map等,用来存放数据。
- 算法:各种常用的算法,如sort、find、copy、for_each等
- 迭代器:扮演了容器与算法之间的胶合剂。
- 仿函数:行为类似函数,可作为算法的某种策略。
- 适配器:一种用来修饰容器或者仿函数或迭代器接口的东西。
-
空间配置器:负责空间的配置与管理。
2.4 STL中容器、算法、迭代器
容器: 置物之所也
- STL容器就是将运用最广泛的一些数据结构实现出来;
- 常用的数据结构:数组, 链表,树, 栈, 队列, 集合, 映射表 等;
- 这些容器分为两种:
-
-
序列式容器:强调值的排序,序列式容器中的每个元素均有固定的位置。
-
关联式容器:二叉树结构,各元素之间没有严格的物理上的顺序关系
-
算法: 问题之解法也
- 有限的步骤,解决逻辑或数学上的问题,这一门学科我们叫做算法(Algorithms)
- 算法分为两种:
-
-
质变算法:是指运算过程中会更改区间内的元素的内容。例如拷贝,替换,删除等等;
-
非质变算法:是指运算过程中不会更改区间内的元素内容,例如查找、计数、遍历、寻找极值等等。
-
迭代器: 容器和算法之间粘合剂
- 提供一种方法,使之能够依序寻访某个容器所含的各个元素,而又无需暴露该容器的内部表示方式;
- 每个容器都有自己专属的迭代器;
- 迭代器使用非常类似于指针,初学阶段我们可以先理解迭代器为指针。
- 迭代器种类:
| 种类 | 功能 | 支持运算 |
|---|---|---|
| 输入迭代器 | 对数据的只读访问 | 只读,支持++、==、!= |
| 输出迭代器 | 对数据的只写访问 | 只写,支持++ |
| 前向迭代器 | 读写操作,并能向前推进迭代器 | 读写,支持++、==、!= |
| 双向迭代器 | 读写操作,并能向前和向后操作 | 读写,支持++、--, |
| 随机访问迭代器 | 读写操作,可以以跳跃的方式访问任意数据,功能最强的迭代器 | 读写,支持++、--、[n]、-n、<、<=、>、>= |
-
常用的容器中迭代器种类为双向迭代器,和随机访问迭代器
2.5 容器算法迭代器初识
STL中最常用的容器为Vector,可以理解为数组,下面我们将向这个容器中插入数据、并遍历这个容器
- 容器:
vector - 算法:
for_each - 迭代器:
vector<int>::iterator
vector存放内置数据类型:
#include <vector>
#include <algorithm>
void MyPrint(int val)
{
cout << val << endl;
}
void test01() {
//创建vector容器对象,并且通过模板参数指定容器中存放的数据的类型
vector<int> v;
//向容器中放数据
v.push_back(10);
v.push_back(20);
v.push_back(30);
v.push_back(40);
//每一个容器都有自己的迭代器,迭代器是用来遍历容器中的元素
//v.begin()返回迭代器,这个迭代器指向容器中第一个数据
//v.end()返回迭代器,这个迭代器指向容器元素的最后一个元素的下一个位置
//vector<int>::iterator 拿到vector<int>这种容器的迭代器类型
vector<int>::iterator pBegin = v.begin();
vector<int>::iterator pEnd = v.end();
//第一种遍历方式:
while (pBegin != pEnd) {
cout << *pBegin << endl;
pBegin++;
}
//第二种遍历方式:
for (vector<int>::iterator it = v.begin(); it != v.end(); it++) {
cout << *it << endl;
}
cout << endl;
//第三种遍历方式:
//使用STL提供标准遍历算法 头文件 algorithm
for_each(v.begin(), v.end(), MyPrint);
}
int main() {
test01();
system("pause");
return 0;
}
Vector存放自定义数据类型:
#include <vector>
#include <string>
//自定义数据类型
class Person {
public:
Person(string name, int age) {
mName = name;
mAge = age;
}
public:
string mName;
int mAge;
};
//存放对象
void test01() {
vector<Person> v;
//创建数据
Person p1("aaa", 10);
Person p2("bbb", 20);
Person p3("ccc", 30);
Person p4("ddd", 40);
Person p5("eee", 50);
v.push_back(p1);
v.push_back(p2);
v.push_back(p3);
v.push_back(p4);
v.push_back(p5);
for (vector<Person>::iterator it = v.begin(); it != v.end(); it++) {
cout << "Name:" << (*it).mName << " Age:" << (*it).mAge << endl;
}
}
//放对象指针
void test02() {
vector<Person*> v;
//创建数据
Person p1("aaa", 10);
Person p2("bbb", 20);
Person p3("ccc", 30);
Person p4("ddd", 40);
Person p5("eee", 50);
v.push_back(&p1);
v.push_back(&p2);
v.push_back(&p3);
v.push_back(&p4);
v.push_back(&p5);
for (vector<Person*>::iterator it = v.begin(); it != v.end(); it++) {
Person * p = (*it);
cout << "Name:" << p->mName << " Age:" << (*it)->mAge << endl;
}
}
int main() {
test01();
test02();
system("pause");
return 0;
}
Vector容器嵌套容器:
#include <vector>
//容器嵌套容器
void test01() {
vector< vector<int> > v;
vector<int> v1;
vector<int> v2;
vector<int> v3;
vector<int> v4;
for (int i = 0; i < 4; i++) {
v1.push_back(i + 1);
v2.push_back(i + 2);
v3.push_back(i + 3);
v4.push_back(i + 4);
}
//将容器元素插入到vector v中
v.push_back(v1);
v.push_back(v2);
v.push_back(v3);
v.push_back(v4);
for (vector<vector<int>>::iterator it = v.begin(); it != v.end(); it++) {
for (vector<int>::iterator vit = (*it).begin(); vit != (*it).end(); vit++) {
cout << *vit << " ";
}
cout << endl;
}
}
int main() {
test01();
system("pause");
return 0;
}
3 STL 常用容器
3.1 string容器
3.1.1 string基本概念
本质: string是C++风格的字符串,而string本质上是一个类。
string和char * 区别:
char *是一个指针;
-
string是一个类,类内部封装了char*,管理这个字符串,是一个char*型的容器。
特点:
string类内部封装了很多成员方法;
-
- 例如:查找find,拷贝copy,删除delete 替换replace,插入insert
-
string管理char*所分配的内存,不用担心复制越界和取值越界等,由类内部进行负责。
3.1.2 string构造函数
构造函数原型:
string();//创建一个空的字符串 例如: string str;string(const char* s);//使用字符串s初始化
string(const string& str);//使用一个string对象初始化另一个string对象
-
string(int n, char c);//使用n个字符c初始化
示例:
#include <string>
//string构造
void test01()
{
string s1; //创建空字符串,调用无参构造函数
cout << "str1 = " << s1 << endl;
const char* str = "hello world";
string s2(str); //把c_string转换成了string
cout << "str2 = " << s2 << endl;
string s3(s2); //调用拷贝构造函数
cout << "str3 = " << s3 << endl;
string s4(10, 'a');
cout << "str3 = " << s3 << endl;
}
int main() {
test01();
system("pause");
return 0;
}
总结:string的多种构造方式没有可比性,灵活使用即可
3.1.3 string赋值操作
赋值函数原型:
string& operator=(const char* s);//把char*类型字符串赋值给当前的字符串
string& operator=(const string &s);//把字符串s赋给当前的字符串
string& operator=(char c);//把字符赋值给当前的字符串
string& assign(const char *s);//把char*类型字符串s赋给当前的字符串
string& assign(const char *s, int n);//把char*类型字符串s的前n个字符赋给当前的字符串
string& assign(const string &s);//把字符串s赋给当前字符串
-
string& assign(int n, char c);//用n个字符c赋给当前字符串
示例:
//赋值
void test01()
{
string str1;
str1 = "hello world"; //把char*类型字符串赋值给当前的字符串
cout << "str1 = " << str1 << endl;
string str2;
str2 = str1; //把字符串s赋给当前的字符串
cout << "str2 = " << str2 << endl;
string str3;
str3 = 'a'; //把字符赋值给当前的字符串
cout << "str3 = " << str3 << endl;
string str4;
str4.assign("hello c++"); //把char*类型字符串s赋给当前的字符串
cout << "str4 = " << str4 << endl;
string str5;
str5.assign("hello c++",5); //把char*类型字符串s的前n个字符赋给当前的字符串
cout << "str5 = " << str5 << endl;
string str6;
str6.assign(str5); //把字符串s赋给当前字符串
cout << "str6 = " << str6 << endl;
string str7;
str7.assign(5, 'x'); //用n个字符c赋给当前字符串
cout << "str7 = " << str7 << endl;
}
int main() {
test01();
system("pause");
return 0;
}
总结:string的赋值方式很多,operator= 这种方式是比较实用的
3.1.4 string字符串拼接
拼接函数原型:
string& operator+=(const char* str);//重载+=操作符
string& operator+=(const char c);//重载+=操作符
string& operator+=(const string& str);//重载+=操作符
string& append(const char *s);//把字符串s连接到当前字符串结尾
string& append(const char *s, int n);//把字符串s的前n个字符连接到当前字符串结尾
string& append(const string &s);//同operator+=(const string& str)
-
string& append(const string &s, int pos, int n);//字符串s中从pos开始的n个字符连接到字符串结尾
示例:
//字符串拼接
void test01()
{
string str1 = "我";
str1 += "爱玩游戏";
cout << "str1 = " << str1 << endl;
str1 += ':';
cout << "str1 = " << str1 << endl;
string str2 = "LOL DNF";
str1 += str2;
cout << "str1 = " << str1 << endl;
string str3 = "I";
cout << "str3 = " << str3 << endl;
str3.append(" love ");
cout << "str3 = " << str3 << endl;
str3.append("game abcde", 4);
cout << "str3 = " << str3 << endl;
str3.append(str2);
cout << "str3 = " << str3 << endl;
str3.append(str2, 4, 3); // 从下标4位置开始 ,截取3个字符,拼接到字符串末尾
cout << "str3 = " << str3 << endl;
}
int main() {
test01();
system("pause");
return 0;
}
总结:字符串拼接的重载版本很多,初学阶段记住几种即可
3.1.5 string查找和替换
查找函数原型:
int find(const string& str, int pos = 0) const;//查找str第一次出现位置,从pos开始查找
int find(const char* s, int pos = 0) const;//查找s第一次出现位置,从pos开始查找
int find(const char* s, int pos, int n) const;//从pos位置查找s的前n个字符第一次位置
int find(const char c, int pos = 0) const;//查找字符c第一次出现位置
int rfind(const string& str, int pos = npos) const;//查找str最后一次位置,从pos开始查找
int rfind(const char* s, int pos = npos) const;//查找s最后一次出现位置,从pos开始查找
int rfind(const char* s, int pos, int n) const;//从pos查找s的前n个字符最后一次位置
int rfind(const char c, int pos = 0) const;//查找字符c最后一次出现位置
const声明该函数为只读函数,不会修改任何数据成员。
1、可提高程序的可读性。
2、提高程序的健壮性。
替换函数原型:
-
string& replace(int pos, int n, const string& str);//替换从pos开始n个字符为字符串str -
string& replace(int pos, int n,const char* s);//替换从pos开始的n个字符为字符串s
示例:
//查找和替换
void test01()
{
//查找
string str1 = "abcdefgde";
int pos = str1.find("de");
if (pos == -1)
{
cout << "未找到" << endl;
}
else
{
cout << "pos = " << pos << endl;
}
pos = str1.rfind("de");
cout << "pos = " << pos << endl;
}
void test02()
{
//替换
string str1 = "abcdefgde";
str1.replace(1, 3, "1111");
cout << "str1 = " << str1 << endl;
}
int main() {
//test01();
//test02();
system("pause");
return 0;
}
总结:
- find查找是从左往后,rfind从右往左;
- find找到字符串后返回查找的第一个字符位置,找不到返回-1;
-
replace在替换时,要指定从哪个位置起,多少个字符,替换成什么样的字符串。
3.1.6 string字符存取
string中单个字符存取方式有两种
char& operator[](int n);//通过[]方式取字符char& at(int n);//通过at方法获取字符
示例:
void test01()
{
string str = "hello world";
for (int i = 0; i < str.size(); i++)
{
cout << str[i] << " ";
}
cout << endl;
for (int i = 0; i < str.size(); i++)
{
cout << str.at(i) << " ";
}
cout << endl;
//字符修改
str[0] = 'x';
str.at(1) = 'x';
cout << str << endl;
}
int main() {
test01();
system("pause");
return 0;
}
3.1.7 string插入和删除
插入函数原型:
string& insert(int pos, const char* s);//插入字符串string& insert(int pos, const string& str);//插入字符串string& insert(int pos, int n, char c);//在指定位置插入n个字符c
删除函数原型:
-
string& erase(int pos, int n = npos);//删除从Pos开始的n个字符
示例:
//字符串插入和删除
void test01()
{
string str = "hello";
str.insert(1, "111");
cout << str << endl;
str.erase(1, 3); //从1号位置开始3个字符
cout << str << endl;
}
int main() {
test01();
system("pause");
return 0;
}
总结: 插入和删除的起始下标都是从0开始
3.1.8 string子串
函数原型:
-
string substr(int pos = 0, int n = npos) const;//返回由pos开始的n个字符组成的字符串
示例:
//子串
void test01()
{
string str = "abcdefg";
string subStr = str.substr(1, 3);
cout << "subStr = " << subStr << endl;
//结合find()灵活的运用求子串功能
string email = "hello@sina.com";
int pos = email.find("@");
string username = email.substr(0, pos);
cout << "username: " << username << endl;
}
int main() {
test01();
system("pause");
return 0;
}
3.1.9 string字符串比较
比较方式:字符串比较是按字符的ASCII码进行对比
-
= 返回 0
-
返回 1
-
< 返回 -1
比较函数原型:
int compare(const string &s) const;//与字符串s比较
-
int compare(const char *s) const;//与字符串s比较
示例:
//字符串比较
void test01()
{
string s1 = "hello";
string s2 = "aello";
int ret = s1.compare(s2);
if (ret == 0)
{
cout << "s1 等于 s2" << endl;
}
else if (ret > 0)
{
cout << "s1 大于 s2" << endl;
}
else
{
cout << "s1 小于 s2" << endl;
}
}
int main() {
test01();
system("pause");
return 0;
}
总结:字符串对比主要是用于比较两个字符串是否相等,判断谁大谁小的意义并不是很大
3.2 vector容器
3.2.1 vector基本概念
功能: vector数据结构和数组非常相似,也称为单端数组
vector与普通数组区别:
- 不同之处在于数组是静态空间,而vector可以动态扩展
-
- 动态扩展:并不是在原空间之后续接新空间,而是找更大的内存空间,然后将原数据拷贝新空间,释放原空间
-
vector容器的迭代器是支持随机访问的迭代器
3.2.2 vector构造函数
构造函数原型:
vector<T> v;//采用模板实现类实现,默认构造函数
vector(v.begin(), v.end());//将v[begin(), end())区间中的元素拷贝给本身。
vector(n, elem);//构造函数将n个elem拷贝给本身。
-
vector(const vector &vec);//拷贝构造函数。
示例:
#include <vector>
void printVector(vector<int>& v) {
for (vector<int>::iterator it = v.begin(); it != v.end(); it++) {
cout << *it << " ";
}
cout << endl;
}
void test01()
{
vector<int> v1; //无参构造
for (int i = 0; i < 10; i++)
{
v1.push_back(i);
}
printVector(v1);
vector<int> v2(v1.begin(), v1.end());
printVector(v2);
vector<int> v3(10, 100);
printVector(v3);
vector<int> v4(v3);
printVector(v4);
}
int main() {
test01();
system("pause");
return 0;
}
总结:vector的多种构造方式没有可比性,灵活使用即可
3.2.3 vector赋值操作
赋值函数原型:
vector& operator=(const vector &vec);//重载等号操作符
assign(beg, end);//将[beg, end)区间中的数据拷贝赋值给本身。
-
assign(n, elem);//将n个elem拷贝赋值给本身。
示例:
#include <vector>
void printVector(vector<int>& v) {
for (vector<int>::iterator it = v.begin(); it != v.end(); it++) {
cout << *it << " ";
}
cout << endl;
}
//赋值操作
void test01()
{
vector<int> v1; //无参构造
for (int i = 0; i < 10; i++)
{
v1.push_back(i);
}
printVector(v1);
vector<int>v2;
v2 = v1;
printVector(v2);
vector<int>v3;
v3.assign(v1.begin(), v1.end());
printVector(v3);
vector<int>v4;
v4.assign(10, 100);
printVector(v4);
}
int main() {
test01();
system("pause");
return 0;
}
3.2.4 vector容量和大小
函数原型:
empty();//判断容器是否为空
capacity();//容器容量(vector可以动态扩展)
size();//容器中元素个数
resize(int num);//重新指定容器的长度为num,若容器变长,则以默认值填充新位置。
//如果容器变短,则末尾超出容器长度的元素被删除。
-
resize(int num, elem);//重新指定容器的长度为num,若容器变长,则以elem值填充新位置。
//如果容器变短,则末尾超出容器长度的元素被删除
示例:
#include <vector>
void printVector(vector<int>& v) {
for (vector<int>::iterator it = v.begin(); it != v.end(); it++) {
cout << *it << " ";
}
cout << endl;
}
void test01()
{
vector<int> v1;
for (int i = 0; i < 10; i++)
{
v1.push_back(i);
}
printVector(v1);
if (v1.empty())
{
cout << "v1为空" << endl;
}
else
{
cout << "v1不为空" << endl;
cout << "v1的容量 = " << v1.capacity() << endl;
cout << "v1的大小 = " << v1.size() << endl;
}
//resize 重新指定大小 ,若指定的更大,默认用0填充新位置,可以利用重载版本替换默认填充
v1.resize(15,10);
printVector(v1);
//resize 重新指定大小 ,若指定的更小,超出部分元素被删除
v1.resize(5);
printVector(v1);
}
int main() {
test01();
system("pause");
return 0;
}
3.2.5 vector插入和删除
插入函数原型:
push_back(ele);//尾部插入元素ele
insert(const_iterator pos, ele);//迭代器指向位置pos插入元素ele
-
insert(const_iterator pos, int count,ele);//迭代器指向位置pos插入count个元素ele
删除函数原型:
pop_back();//删除最后一个元素erase(const_iterator pos);//删除迭代器指向的元素
erase(const_iterator start, const_iterator end);//删除迭代器从start到end之间的元素
-
clear();//删除容器中所有元素
示例:
#include <vector>
void printVector(vector<int>& v) {
for (vector<int>::iterator it = v.begin(); it != v.end(); it++) {
cout << *it << " ";
}
cout << endl;
}
//插入和删除
void test01()
{
vector<int> v1;
//尾插
v1.push_back(10);
v1.push_back(20);
v1.push_back(30);
v1.push_back(40);
v1.push_back(50);
printVector(v1);
//尾删
v1.pop_back();
printVector(v1);
//插入
v1.insert(v1.begin(), 100);
printVector(v1);
v1.insert(v1.begin(), 2, 1000);
printVector(v1);
//删除
v1.erase(v1.begin());
printVector(v1);
//清空
v1.erase(v1.begin(), v1.end());
v1.clear();
printVector(v1);
}
int main() {
test01();
system("pause");
return 0;
}
3.2.6 vector数据存取
存取函数原型:
at(int idx);//返回索引idx所指的数据
operator[];//返回索引idx所指的数据
front();//返回容器中第一个数据元素
-
back();//返回容器中最后一个数据元素
示例:
#include <vector>
void test01()
{
vector<int>v1;
for (int i = 0; i < 10; i++)
{
v1.push_back(i);
}
for (int i = 0; i < v1.size(); i++)
{
cout << v1[i] << " ";
}
cout << endl;
for (int i = 0; i < v1.size(); i++)
{
cout << v1.at(i) << " ";
}
cout << endl;
cout << "v1的第一个元素为: " << v1.front() << endl;
cout << "v1的最后一个元素为: " << v1.back() << endl;
}
int main() {
test01();
system("pause");
return 0;
}
3.2.7 vector互换容器
互换函数原型:
-
swap(vec);// 将vec与本身的元素互换
示例:
#include <vector>
void printVector(vector<int>& v) {
for (vector<int>::iterator it = v.begin(); it != v.end(); it++) {
cout << *it << " ";
}
cout << endl;
}
void test01()
{
vector<int>v1;
for (int i = 0; i < 10; i++)
{
v1.push_back(i);
}
printVector(v1);
vector<int>v2;
for (int i = 10; i > 0; i--)
{
v2.push_back(i);
}
printVector(v2);
//互换容器
cout << "互换后" << endl;
v1.swap(v2);
printVector(v1);
printVector(v2);
}
void test02()
{
vector<int> v;
for (int i = 0; i < 100000; i++) {
v.push_back(i);
}
cout << "v的容量为:" << v.capacity() << endl;
cout << "v的大小为:" << v.size() << endl;
v.resize(3);
cout << "v的容量为:" << v.capacity() << endl;
cout << "v的大小为:" << v.size() << endl;
//收缩内存
vector<int>(v).swap(v); //匿名对象
cout << "v的容量为:" << v.capacity() << endl;
cout << "v的大小为:" << v.size() << endl;
}
int main() {
test01();
test02();
system("pause");
return 0;
}
总结:swap可以使两个容器互换,可以达到实用的收缩内存效果
3.2.8 vector预留空间
功能描述:减少vector在动态扩展容量时的扩展次数
函数原型:
reserve(int len);//容器预留len个元素长度,预留位置不初始化,元素不可访问。
示例:
void test01()
{
vector<int> v;
//预留空间
v.reserve(100000);
int num = 0;
int* p = NULL;
for (int i = 0; i < 100000; i++) {
v.push_back(i);
if (p != &v[0]) {
p = &v[0];
num++;
}
}
cout << "num:" << num << endl;
}
int main() {
test01();
system("pause");
return 0;
}
总结:如果数据量较大,可以一开始利用reserve预留空间
3.3 deque容器
3.3.1 deque基本概念
功能: 双端数组,可以对头端进行插入删除操作
deque & vector 区别:
- vector对于头部的插入删除效率低,数据量越大,效率越低;
- deque相对而言,对头部的插入删除速度回比vector快;
-
vector访问元素时的速度会比deque快,这和两者内部实现有关。
deque内部工作原理:
- deque内部有个中控器,维护每段缓冲区中的内容,缓冲区中存放真实数据;
- 中控器维护的是每个缓冲区的地址,使得使用deque时像一片连续的内存空间;
-
deque容器的迭代器也是支持随机访问的。
3.3.2 deque构造函数
构造函数原型:
deque<T>deqT; //默认构造形式
deque(beg, end);//构造函数将[beg, end)区间中的元素拷贝给本身。
deque(n, elem);//构造函数将n个elem拷贝给本身。
-
deque(const deque &deq);//拷贝构造函数
示例:
#include <deque>
void printDeque(const deque<int>& d)
{
for (deque<int>::const_iterator it = d.begin(); it != d.end(); it++) {
cout << *it << " ";
}
cout << endl;
}
//deque构造
void test01()
{
deque<int> d1; //无参构造函数
for (int i = 0; i < 10; i++)
{
d1.push_back(i);
}
printDeque(d1);
deque<int> d2(d1.begin(),d1.end());
printDeque(d2);
deque<int>d3(10,100);
printDeque(d3);
deque<int>d4 = d3;
printDeque(d4);
}
int main()
{
test01();
system("pause");
return 0;
}
总结:deque容器和vector容器的构造方式几乎一致,灵活使用即可
3.3.3 deque赋值操作
赋值函数原型:
deque& operator=(const deque &deq);//重载等号操作符
assign(beg, end);//将[beg, end)区间中的数据拷贝赋值给本身。
-
assign(n, elem);//将n个elem拷贝赋值给本身。
示例:
#include <deque>
//赋值操作
void test01()
{
deque<int> d1;
for (int i = 0; i < 10; i++)
{
d1.push_back(i);
}
printDeque(d1);
deque<int>d2;
d2 = d1;
printDeque(d2);
deque<int>d3;
d3.assign(d1.begin(), d1.end());
printDeque(d3);
deque<int>d4;
d4.assign(10, 100);
printDeque(d4);
}
int main() {
test01();
system("pause");
return 0;
}
总结:deque赋值操作也与vector相同。
3.3.4 deque容量和大小
函数原型:
deque.empty();//判断容器是否为空
deque.size();//返回容器中元素的个数
deque.resize(num);//重新指定容器的长度为num,若容器变长,则以默认值填充新位置。
//如果容器变短,则末尾超出容器长度的元素被删除。
deque.resize(num, elem);//重新指定容器的长度为num,若容器变长,则以elem值填充新位置。
//如果容器变短,则末尾超出容器长度的元素被删除。
示例:
#include <deque>
void printDeque(const deque<int>& d)
{
for (deque<int>::const_iterator it = d.begin(); it != d.end(); it++) {
cout << *it << " ";
}
cout << endl;
}
//大小操作
void test01()
{
deque<int> d1;
for (int i = 0; i < 10; i++)
{
d1.push_back(i);
}
printDeque(d1);
//判断容器是否为空
if (d1.empty()) {
cout << "d1为空!" << endl;
}
else {
cout << "d1不为空!" << endl;
//统计大小
cout << "d1的大小为:" << d1.size() << endl;
}
//重新指定大小
d1.resize(15, 1);
printDeque(d1);
d1.resize(5);
printDeque(d1);
}
int main()
{
test01();
system("pause");
return 0;
}
3.3.5 deque插入和删除
插入和删除函数原型:
- 两端操作:
-
push_back(elem);//在容器尾部添加一个数据
-
push_front(elem);//在容器头部插入一个数据
-
pop_back();//删除容器最后一个数据
-
pop_front();//删除容器第一个数据
- 指定位置插入操作:
-
insert(pos,elem);//在pos位置插入一个elem元素的拷贝,返回新数据的位置。insert(pos,n,elem);//在pos位置插入n个elem数据,无返回值。insert(pos,beg,end);//在pos位置插入[beg,end)区间的数据,无返回值。erase(beg,end);//删除[beg,end)区间的数据,返回下一个数据的位置。erase(pos);//删除pos位置的数据,返回下一个数据的位置。
- 其他:
-
-
clear();//清空容器的所有数据
-
示例:
#include <deque>
void printDeque(const deque<int>& d)
{
for (deque<int>::const_iterator it = d.begin(); it != d.end(); it++) {
cout << *it << " ";
}
cout << endl;
}
//两端操作
void test01()
{
deque<int> d;
//尾插
d.push_back(10);
d.push_back(20);
//头插
d.push_front(100);
d.push_front(200);
printDeque(d);
//尾删
d.pop_back();
//头删
d.pop_front();
printDeque(d);
}
//插入
void test02()
{
deque<int> d;
d.push_back(10);
d.push_back(20);
d.push_front(100);
d.push_front(200);
printDeque(d);
d.insert(d.begin(), 1000);
printDeque(d);
d.insert(d.begin(), 2,10000);
printDeque(d);
deque<int>d2;
d2.push_back(1);
d2.push_back(2);
d2.push_back(3);
d.insert(d.begin(), d2.begin(), d2.end());
printDeque(d);
}
//删除
void test03()
{
deque<int> d;
d.push_back(10);
d.push_back(20);
d.push_front(100);
d.push_front(200);
printDeque(d);
d.erase(d.begin());
printDeque(d);
d.erase(d.begin(), d.end());
d.clear();
printDeque(d);
}
int main() {
//test01();
//test02();
test03();
system("pause");
return 0;
}
注意:插入和删除提供的位置是迭代器!
3.3.6 deque数据存取
存取函数原型:
at(int idx);//返回索引idx所指的数据
operator[];//返回索引idx所指的数据
front();//返回容器中第一个数据元素
-
back();//返回容器中最后一个数据元素
示例:
#include <deque>
void printDeque(const deque<int>& d)
{
for (deque<int>::const_iterator it = d.begin(); it != d.end(); it++) {
cout << *it << " ";
}
cout << endl;
}
//数据存取
void test01()
{
deque<int> d;
d.push_back(10);
d.push_back(20);
d.push_front(100);
d.push_front(200);
for (int i = 0; i < d.size(); i++)
{
cout << d[i] << " ";
}
cout << endl;
for (int i = 0; i < d.size(); i++)
{
cout << d.at(i) << " ";
}
cout << endl;
cout << "front:" << d.front() << endl;
cout << "back:" << d.back() << endl;
}
int main()
{
test01();
system("pause");
return 0;
}
3.3.7 deque容器排序
算法:
-
sort(iterator beg, iterator end)//对beg和end区间内元素进行排序
示例:
#include <deque>
#include <algorithm>
void printDeque(const deque<int>& d)
{
for (deque<int>::const_iterator it = d.begin(); it != d.end(); it++) {
cout << *it << " ";
}
cout << endl;
}
void test01()
{
deque<int> d;
d.push_back(10);
d.push_back(20);
d.push_front(100);
d.push_front(200);
vector<int> v;
v.push_back(10);
v.push_back(30);
v.push_back(50);
v.push_back(20);
printDeque(d);
sort(d.begin(), d.end());
printDeque(d);
printVector(v);
sort(v.begin(), v.end());
printVector(v);
}
int main() {
test01();
system("pause");
return 0;
}
总结:sort算法非常实用,对vector通用,使用时包含头文件 algorithm即可
3.4 stack容器
3.4.1 stack 基本概念
概念: stack是一种先进后出(First In Last Out,FILO)的数据结构,它只有一个出口。
- 栈中只有顶端的元素才可以被外界使用,因此栈不允许有遍历行为:
-
-
栈中进入数据称为 --- 入栈
push -
栈中弹出数据称为 --- 出栈
pop
-
3.4.2 stack 常用接口
构造函数:
stack<T> stk;//stack采用模板类实现, stack对象的默认构造形式
-
stack(const stack &stk);//拷贝构造函数
赋值操作:
-
stack& operator=(const stack &stk);//重载等号操作符
数据存取:
push(elem);//向栈顶添加元素
pop();//从栈顶移除第一个元素
-
top();//返回栈顶元素
大小操作:
empty();//判断堆栈是否为空
-
size();//返回栈的大小
示例:
#include <stack>
//栈容器常用接口
void test01()
{
//创建栈容器 栈容器必须符合先进后出
stack<int> s;
//向栈中添加元素,叫做 压栈 入栈
s.push(10);
s.push(20);
s.push(30);
while (!s.empty())
{
//输出栈顶元素
cout << "栈顶元素为: " << s.top() << endl;
//弹出栈顶元素
s.pop();
}
cout << "栈的大小为:" << s.size() << endl;
}
int main() {
test01();
system("pause");
return 0;
}
3.5 queue 容器
3.5.1 queue 基本概念
概念: Queue是一种先进先出(First In First Out,FIFO)的数据结构,它有两个出口
- 队列容器允许从一端新增元素,从另一端移除元素;
- 队列中只有队头和队尾才可以被外界使用,因此队列不允许有遍历行为;
-
-
队列中进数据称为 --- 入队
push -
队列中出数据称为 --- 出队
pop
-
3.5.2 queue 常用接口
构造函数:
queue<T> que;//queue采用模板类实现,queue对象的默认构造形式
-
queue(const queue &que);//拷贝构造函数
赋值操作:
-
queue& operator=(const queue &que);//重载等号操作符
数据存取:
push(elem);//往队尾添加元素
pop();//从队头移除第一个元素
back();//返回最后一个元素
-
front();//返回第一个元素
大小操作:
empty();//判断堆栈是否为空
-
size();//返回栈的大小
示例:
#include <queue>
#include <string>
class Person
{
public:
Person(string name, int age)
{
this->m_Name = name;
this->m_Age = age;
}
string m_Name;
int m_Age;
};
void test01() {
//创建队列
queue<Person> q;
//准备数据
Person p1("唐僧", 30);
Person p2("孙悟空", 1000);
Person p3("猪八戒", 900);
Person p4("沙僧", 800);
//向队列中添加元素 入队操作
q.push(p1);
q.push(p2);
q.push(p3);
q.push(p4);
//队列不提供迭代器,更不支持随机访问
while (!q.empty()) {
//输出队头元素
cout << "队头元素-- 姓名: " << q.front().m_Name
<< " 年龄: "<< q.front().m_Age << endl;
cout << "队尾元素-- 姓名: " << q.back().m_Name
<< " 年龄: " << q.back().m_Age << endl;
cout << endl;
//弹出队头元素
q.pop();
}
cout << "队列大小为:" << q.size() << endl;
}
int main() {
test01();
system("pause");
return 0;
}
3.6 list容器
3.6.1 list基本概念
功能: 将数据进行链式存储
- 由于链表的存储方式不是连续的内存空间,因此链表list中的迭代器只支持前移和后移,属于双向迭代器。
- list的优点:
-
- 采用动态存储分配,不会造成内存浪费和溢出
- 链表执行插入和删除操作十分方便,修改指针即可,不需要移动大量元素
- list的缺点:
-
- 链表灵活,但是空间(指针域) 和 时间(遍历)额外耗费较大
-
List有一个重要的性质,插入操作和删除操作都不会造成原有list 迭代器的失效,这在vector是不成立的。
链表(list)是一种物理存储单元上非连续的存储结构,数据元素的逻辑顺序是通过链表中的指针链接实现的
- 链表的组成:链表由一系列结点组成;
- 结点的组成:一个是存储数据元素的数据域,另一个是存储下一个结点地址的指针域;
- STL中的链表是一个双向循环链表:
总结:STL中List和vector是两个最常被使用的容器,各有优缺点
3.6.2 list构造函数
构造函数原型:
list<T> lst;//list采用采用模板类实现,对象的默认构造形式:
list(beg,end);//构造函数将[beg, end)区间中的元素拷贝给本身。
list(n,elem);//构造函数将n个elem拷贝给本身。
-
list(const list &lst);//拷贝构造函数。
示例:
#include <list>
void printList(const list<int>& L) {
for (list<int>::const_iterator it = L.begin(); it != L.end(); it++) {
cout << *it << " ";
}
cout << endl;
}
void test01()
{
list<int>L1;
L1.push_back(10);
L1.push_back(20);
L1.push_back(30);
L1.push_back(40);
printList(L1);
list<int>L2(L1.begin(),L1.end());
printList(L2);
list<int>L3(L2);
printList(L3);
list<int>L4(10, 1000);
printList(L4);
}
int main() {
test01();
system("pause");
return 0;
}
总结:list构造方式同其他几个STL常用容器,熟练掌握即可
3.6.3 list赋值操作
赋值函数原型:
assign(beg, end);//将[beg, end)区间中的数据拷贝赋值给本身。
assign(n, elem);//将n个elem拷贝赋值给本身。
-
list& operator=(const list &lst);//重载等号操作符
示例:
#include <list>
void printList(const list<int>& L) {
for (list<int>::const_iterator it = L.begin(); it != L.end(); it++) {
cout << *it << " ";
}
cout << endl;
}
//赋值和交换
void test01()
{
list<int>L1;
L1.push_back(10);
L1.push_back(20);
L1.push_back(30);
L1.push_back(40);
printList(L1);
//赋值
list<int>L2;
L2 = L1;
printList(L2);
list<int>L3;
L3.assign(L2.begin(), L2.end());
printList(L3);
list<int>L4;
L4.assign(10, 100);
printList(L4);
}
//交换
void test02()
{
list<int>L1;
L1.push_back(10);
L1.push_back(20);
L1.push_back(30);
L1.push_back(40);
list<int>L2;
L2.assign(10, 100);
cout << "交换前: " << endl;
printList(L1);
printList(L2);
cout << endl;
L1.swap(L2);
cout << "交换后: " << endl;
printList(L1);
printList(L2);
}
int main() {
//test01();
test02();
system("pause");
return 0;
}
3.6.4 list大小和交换
大小函数原型:
size();//返回容器中元素的个数
empty();//判断容器是否为空
resize(num);//重新指定容器的长度为num,若容器变长,则以默认值填充新位置。
//如果容器变短,则末尾超出容器长度的元素被删除。
resize(num, elem);//重新指定容器的长度为num,若容器变长,则以elem值填充新位置。
//如果容器变短,则末尾超出容器长度的元素被删除。
互换函数原型:
-
swap(lst);//将list与本身的元素互换。
示例:
#include <list>
void printList(const list<int>& L) {
for (list<int>::const_iterator it = L.begin(); it != L.end(); it++) {
cout << *it << " ";
}
cout << endl;
}
//大小操作
void test01()
{
list<int>L1;
L1.push_back(10);
L1.push_back(20);
L1.push_back(30);
L1.push_back(40);
if (L1.empty())
{
cout << "L1为空" << endl;
}
else
{
cout << "L1不为空" << endl;
cout << "L1的大小为: " << L1.size() << endl;
}
//重新指定大小
L1.resize(10);
printList(L1);
L1.resize(2);
printList(L1);
}
//容器互换
void test02()
{
list<int>L1;
L1.push_back(10);
L1.push_back(20);
L1.push_back(30);
L1.push_back(40);
list<int>L2;
L2.assign(10, 100);
cout << "交换前: " << endl;
printList(L1);
printList(L2);
cout << endl;
L1.swap(L2);
cout << "交换后: " << endl;
printList(L1);
printList(L2);
}
int main() {
test01();
system("pause");
return 0;
}
3.6.5 list插入和删除
插入函数原型:
push_back(elem);//在容器尾部加入一个元素
push_front(elem);//在容器开头插入一个元素
insert(pos,elem);//在pos位置插elem元素的拷贝,返回新数据的位置。
insert(pos,n,elem);//在pos位置插入n个elem数据,无返回值。
-
insert(pos,beg,end);//在pos位置插入[beg,end)区间的数据,无返回值。
删除函数原型:
clear();//移除容器的所有数据pop_back();//删除容器中最后一个元素pop_front();//从容器开头移除第一个元素
erase(beg,end);//删除[beg,end)区间的数据,返回下一个数据的位置。
erase(pos);//删除pos位置的数据,返回下一个数据的位置。
-
remove(elem);//删除容器中所有与elem值匹配的元素。
示例:
#include <list>
void printList(const list<int>& L) {
for (list<int>::const_iterator it = L.begin(); it != L.end(); it++) {
cout << *it << " ";
}
cout << endl;
}
//插入和删除
void test01()
{
list<int> L;
//尾插
L.push_back(10);
L.push_back(20);
L.push_back(30);
//头插
L.push_front(100);
L.push_front(200);
L.push_front(300);
printList(L);
//尾删
L.pop_back();
printList(L);
//头删
L.pop_front();
printList(L);
//插入
list<int>::iterator it = L.begin();
L.insert(++it, 1000);
printList(L);
//删除
it = L.begin();
L.erase(++it);
printList(L);
//移除
L.push_back(10000);
L.push_back(10000);
L.push_back(10000);
printList(L);
L.remove(10000);
printList(L);
//清空
L.clear();
printList(L);
}
int main() {
test01();
system("pause");
return 0;
}
3.6.6 list 数据存取
存取函数原型:
front();//返回第一个元素。
-
back();//返回最后一个元素。
示例:
#include <list>
//数据存取
void test01()
{
list<int>L1;
L1.push_back(10);
L1.push_back(20);
L1.push_back(30);
L1.push_back(40);
//cout << L1.at(0) << endl;//错误 不支持at访问数据
//cout << L1[0] << endl; //错误 不支持[]方式访问数据
cout << "第一个元素为: " << L1.front() << endl;
cout << "最后一个元素为: " << L1.back() << endl;
//list容器的迭代器是双向迭代器,不支持随机访问
list<int>::iterator it = L1.begin();
//it = it + 1;//错误,不可以跳跃访问,即使是+1
}
int main() {
test01();
system("pause");
return 0;
}
总结:
- list容器中不可以通过[]或者at方式访问数据
- 返回第一个元素 --- front
-
返回最后一个元素 --- back
3.6.7 list 反转和排序
函数原型:
reverse();//反转链表
-
sort();//链表排序,可指定规则
示例:
void printList(const list<int>& L) {
for (list<int>::const_iterator it = L.begin(); it != L.end(); it++) {
cout << *it << " ";
}
cout << endl;
}
bool myCompare(int val1 , int val2)
{
return val1 > val2;
}
//反转和排序
void test01()
{
list<int> L;
L.push_back(90);
L.push_back(30);
L.push_back(20);
L.push_back(70);
printList(L);
//反转容器的元素
L.reverse();
printList(L);
//排序
L.sort(); //默认的排序规则 从小到大
printList(L);
L.sort(myCompare); //指定规则,从大到小
printList(L);
}
int main() {
test01();
system("pause");
return 0;
}
3.7 set/ multiset 容器
3.7.1 set基本概念
简介:所有元素都会在插入时自动被排序,set & multiset区别:
-
set不允许容器中有重复的元素;
-
multiset允许容器中有重复的元素。
本质:set/multiset属于关联式容器,底层结构是用二叉树实现。
3.7.2 set构造和赋值
构造函数原型:
set<T> st;//默认构造函数:
-
set(const set &st);//拷贝构造函数
赋值函数原型:
-
set& operator=(const set &st);//重载等号操作符
示例:
#include <iostream>
#include "Std_Tools.h"
using namespace std;
//构造和赋值
void test19()
{
set<int> s1;
s1.insert(20);
s1.insert(40);
s1.insert(80);
s1.insert(30);
s1.insert(40);
s1.insert(30);
printSet(s1);
//拷贝构造
set<int>s2(s1);
printSet(s2);
//赋值
set<int>s3;
s3 = s2;
printSet(s3);
}
int main() {
test19();
system("pause");
return 0;
}
自动排序结果:
3.7.3 set大小和交换
大小函数原型:
size();//返回容器中元素的数目
empty();//判断容器是否为空
互换函数原型:
-
swap(st);//交换两个集合容器
示例:
#include <set>
void printSet(set<int> & s)
{
for (set<int>::iterator it = s.begin(); it != s.end(); it++)
{
cout << *it << " ";
}
cout << endl;
}
//大小
void test01()
{
set<int> s1;
s1.insert(10);
s1.insert(30);
s1.insert(20);
s1.insert(40);
if (s1.empty())
{
cout << "s1为空" << endl;
}
else
{
cout << "s1不为空" << endl;
cout << "s1的大小为: " << s1.size() << endl;
}
}
//交换
void test02()
{
set<int> s1;
s1.insert(10);
s1.insert(30);
s1.insert(20);
s1.insert(40);
set<int> s2;
s2.insert(100);
s2.insert(300);
s2.insert(200);
s2.insert(400);
cout << "交换前" << endl;
printSet(s1);
printSet(s2);
cout << endl;
cout << "交换后" << endl;
s1.swap(s2);
printSet(s1);
printSet(s2);
}
int main() {
//test01();
test02();
system("pause");
return 0;
}
3.7.4 set插入和删除
插入函数原型:
-
insert(elem);//在容器中插入元素。
删除函数原型:
clear();//清除所有元素
erase(pos);//删除pos迭代器所指的元素,返回下一个元素的迭代器。
erase(beg, end);//删除区间[beg,end)的所有元素 ,返回下一个元素的迭代器。
-
erase(elem);//删除容器中值为elem的元素。
示例:
//插入和删除
void test01()
{
set<int> s1;
//插入
s1.insert(10);
s1.insert(30);
s1.insert(20);
s1.insert(40);
printSet(s1);
//删除
s1.erase(s1.begin());
printSet(s1);
s1.erase(30);
printSet(s1);
//清空
//s1.erase(s1.begin(), s1.end());
s1.clear();
printSet(s1);
}
int main() {
test01();
system("pause");
return 0;
}
3.7.5 set查找和统计
查找函数原型:
-
find(key);//查找key是否存在。若存在,返回该键的元素的迭代器;若不存在,返回set.end();
统计函数原型:
-
count(key);//统计key的元素个数
示例:
#include <set>
//查找和统计
void test01()
{
set<int> s1;
//插入
s1.insert(10);
s1.insert(30);
s1.insert(20);
s1.insert(40);
//查找
set<int>::iterator pos = s1.find(30);
if (pos != s1.end())
{
cout << "找到了元素 : " << *pos << endl;
}
else
{
cout << "未找到元素" << endl;
}
//统计
int num = s1.count(30);
cout << "num = " << num << endl;
}
int main() {
test01();
system("pause");
return 0;
}
3.7.6 set和multiset区别
区别:
- set不可以插入重复数据,而multiset可以;
- set插入数据的同时会返回插入结果,表示插入是否成功;
-
set.insert(elem)返回值类型pair<set<T>::iterator, bool>;
- multiset不会检测数据,因此可以插入重复数据。
-
-
multiset.insert(elem)返回值类型multiset<T>::iterator;
-
示例:
#include <iostream>
#include "Std_Tools.h"
using namespace std;
//set和multiset区别
void test22()
{
set<int> s;
pair<set<int>::iterator, bool> ret = s.insert(10);
if (ret.second) {
cout << "第一次插入成功!" << endl;
}
else {
cout << "第一次插入失败!" << endl;
}
ret = s.insert(10);
if (ret.second) {
cout << "第二次插入成功!" << endl;
}
else {
cout << "第二次插入失败!" << endl;
}
//multiset
multiset<int> ms;
multiset<int>::iterator it1 = ms.insert(10);
cout << "第一次插入:"<< *it1 << endl;
multiset<int>::iterator it2 = ms.insert(10);
cout << "第二次插入:"<< *it2 << endl;
for (multiset<int>::iterator it = ms.begin(); it != ms.end(); it++) {
cout << *it << " ";
}
cout << endl;
}
int main() {
test22();
system("pause");
return 0;
}
3.7.7 pair对组创建
功能描述:成对出现的数据,利用对组可以返回两个数据
两种创建方式:
pair<type, type> p ( value1, value2 );
-
pair<type, type> p = make_pair( value1, value2 );
示例:
#include <string>
//对组创建
void test01()
{
pair<string, int> p(string("Tom"), 20);
cout << "姓名: " << p.first << " 年龄: " << p.second << endl;
pair<string, int> p2 = make_pair("Jerry", 10);
cout << "姓名: " << p2.first << " 年龄: " << p2.second << endl;
}
int main() {
test01();
system("pause");
return 0;
}
3.7.8 set容器排序
set容器可以改变排序规则:
-
set存放内置数据类型,利用仿函数可以指定set容器的排序规则;
-
set存放自定义数据类型,set必须指定排序规则才可以插入数据。
示例一:
#include <set>
class MyCompare
{
public:
bool operator()(int v1, int v2) {
return v1 > v2;
}
};
void test01()
{
set<int> s1;
s1.insert(10);
s1.insert(40);
s1.insert(20);
s1.insert(30);
s1.insert(50);
//默认从小到大
for (set<int>::iterator it = s1.begin(); it != s1.end(); it++) {
cout << *it << " ";
}
cout << endl;
//指定排序规则
set<int,MyCompare> s2;
s2.insert(10);
s2.insert(40);
s2.insert(20);
s2.insert(30);
s2.insert(50);
for (set<int, MyCompare>::iterator it = s2.begin(); it != s2.end(); it++) {
cout << *it << " ";
}
cout << endl;
}
int main() {
test01();
system("pause");
return 0;
}
示例二:
#include <set>
#include <string>
class Person
{
public:
Person(string name, int age)
{
this->m_Name = name;
this->m_Age = age;
}
string m_Name;
int m_Age;
};
class comparePerson
{
public:
bool operator()(const Person& p1, const Person &p2)
{
//按照年龄进行排序 降序
return p1.m_Age > p2.m_Age;
}
};
void test01()
{
set<Person, comparePerson> s;
Person p1("刘备", 23);
Person p2("关羽", 27);
Person p3("张飞", 25);
Person p4("赵云", 21);
s.insert(p1);
s.insert(p2);
s.insert(p3);
s.insert(p4);
for (set<Person, comparePerson>::iterator it = s.begin(); it != s.end(); it++)
{
cout << "姓名: " << it->m_Name << " 年龄: " << it->m_Age << endl;
}
}
int main()
{
test01();
system("pause");
return 0;
}
3.8 map/ multimap容器
3.9.1 map基本概念
简介:
map中所有元素都是pair;pair中第一个元素为key(键值),起到索引作用,第二个元素为value(实值);
-
所有元素都会根据元素的键值自动排序。
本质:map/multimap属于关联式容器,底层结构是用二叉树实现。
优点:可以根据key值快速找到value值
map & multimap区别:
- map不允许容器中有重复key值元素
-
multimap允许容器中有重复key值元素
3.9.2 map构造和赋值
构造函数原型:
map<T1, T2> mp;//map默认构造函数:
-
map(const map &mp);//拷贝构造函数
赋值函数原型:
-
map& operator=(const map &mp);//重载等号操作符
示例:
#include <map>
void printMap(map<int,int>&m)
{
for (map<int, int>::iterator it = m.begin(); it != m.end(); it++)
{
cout << "key = " << it->first << " value = " << it->second << endl;
}
cout << endl;
}
void test01()
{
map<int,int>m; //默认构造
m.insert(pair<int, int>(1, 10));
m.insert(pair<int, int>(2, 20));
m.insert(pair<int, int>(3, 30));
printMap(m);
map<int, int>m2(m); //拷贝构造
printMap(m2);
map<int, int>m3;
m3 = m2; //赋值
printMap(m3);
}
int main() {
test01();
system("pause");
return 0;
}
3.9.3 map大小和交换
函数原型:
size();//返回容器中元素的数目
empty();//判断容器是否为空
-
swap(st);//交换两个集合容器
示例:
#include <map>
void test01()
{
map<int, int>m;
m.insert(pair<int, int>(1, 10));
m.insert(pair<int, int>(2, 20));
m.insert(pair<int, int>(3, 30));
if (m.empty())
{
cout << "m为空" << endl;
}
else
{
cout << "m不为空" << endl;
cout << "m的大小为: " << m.size() << endl;
}
}
//交换
void test02()
{
map<int, int>m;
m.insert(pair<int, int>(1, 10));
m.insert(pair<int, int>(2, 20));
m.insert(pair<int, int>(3, 30));
map<int, int>m2;
m2.insert(pair<int, int>(4, 100));
m2.insert(pair<int, int>(5, 200));
m2.insert(pair<int, int>(6, 300));
cout << "交换前" << endl;
printMap(m);
printMap(m2);
cout << "交换后" << endl;
m.swap(m2);
printMap(m);
printMap(m2);
}
int main() {
test01();
test02();
system("pause");
return 0;
}
3.9.4 map插入和删除
插入函数原型:
insert(elem);//在容器中插入元素。
-
-
第一种插入方式:
m.insert(pair<int, int>(1, 10)); -
第二种插入方式:
m.insert(make_pair(2, 20)); -
第三种插入方式:
m.insert(map<int, int>::value_type(3, 30)); -
第四种插入方式:
m[4] = 40;
-
删除函数原型:
clear();//清除所有元素
erase(pos);//删除pos迭代器所指的元素,返回下一个元素的迭代器。
erase(beg, end);//删除区间[beg,end)的所有元素 ,返回下一个元素的迭代器。
-
erase(key);//删除容器中值为key的元素。
示例:
#include <map>
void printMap(map<int,int>&m)
{
for (map<int, int>::iterator it = m.begin(); it != m.end(); it++)
{
cout << "key = " << it->first << " value = " << it->second << endl;
}
cout << endl;
}
void test01()
{
//插入
map<int, int> m;
//第一种插入方式
m.insert(pair<int, int>(1, 10));
//第二种插入方式
m.insert(make_pair(2, 20));
//第三种插入方式
m.insert(map<int, int>::value_type(3, 30));
//第四种插入方式
m[4] = 40;
printMap(m);
//删除
m.erase(m.begin());
printMap(m);
m.erase(3);
printMap(m);
//清空
m.erase(m.begin(),m.end());
m.clear();
printMap(m);
}
int main() {
test01();
system("pause");
return 0;
}
3.9.5 map查找和统计
查找函数原型:
find(key);//查找key是否存在,若存在,返回该键的元素的迭代器;若不存在,返回set.end();
统计函数原型:
-
count(key);//统计key的元素个数
示例:
#include <map>
//查找和统计
void test01()
{
map<int, int>m;
m.insert(pair<int, int>(1, 10));
m.insert(pair<int, int>(2, 20));
m.insert(pair<int, int>(3, 30));
//查找
map<int, int>::iterator pos = m.find(3);
if (pos != m.end())
{
cout << "找到了元素 key = " << (*pos).first << " value = " << (*pos).second << endl;
}
else
{
cout << "未找到元素" << endl;
}
//统计
int num = m.count(3);
cout << "num = " << num << endl;
}
int main() {
test01();
system("pause");
return 0;
}
3.9.6 map容器排序
主要技术点:利用仿函数,可以改变排序规则
示例:
#include <map>
class MyCompare {
public:
bool operator()(int v1, int v2) const {
//降序: v1>v2 升序: v1<v2
return v1 > v2;
}
};
void test01()
{
//默认从小到大排序
//利用仿函数实现从大到小排序
map<int, int, MyCompare> m;
m.insert(make_pair(1, 10));
m.insert(make_pair(2, 20));
m.insert(make_pair(3, 30));
m.insert(make_pair(4, 40));
m.insert(make_pair(5, 50));
for (map<int, int, MyCompare>::iterator it = m.begin(); it != m.end(); it++) {
cout << "key:" << it->first << " value:" << it->second << endl;
}
}
int main() {
test01();
system("pause");
return 0;
}
报错:
转到定义,找到了map的一条构造函数:
构造函数中,_First 即为 key ,_Last即为 value 。而 key_compare 被限定为 const 类型,因此我们在为 map 传入参数的时候,仿函数也应该为 const 类型,因此解决方案如下:在仿函数的后面加上关键字 const ,使得 myCompare 作为参数的时候具有 const属性。
总结:
- 利用仿函数可以指定map容器的排序规则
-
对于自定义数据类型,map必须要指定排序规则,同set容器
4 STL 函数对象
4.1 函数对象
概念:
- 重载函数调用操作符
()的类,其对象常称为函数对象;
-
函数对象使用重载的
()时,行为类似函数调用,也叫仿函数.
本质:函数对象(仿函数)是一个类,不是一个函数.
特点:
- 函数对象在使用时,可以像普通函数那样调用, 可以有参数,可以有返回值;
- 函数对象超出普通函数的概念,函数对象可以有自己的状态;
-
函数对象可以作为参数传递。
示例:
#include <iostream>
#include <string>
using namespace std;
//函数对象,是函数调用操作符"()"的类的对象
//1、函数对象在使用时,可以像普通函数那样调用, 可以有参数,可以有返回值
class MyAdd
{
public:
int operator()(int v1, int v2)
{
return v1 + v2;
}
};
void test01()
{
MyAdd myAdd;
cout << myAdd(10, 10) << endl;
}
//2、函数对象可以有自己的状态
class MyPrint
{
public:
MyPrint()
{
count = 0;
}
void operator()(string test)
{
cout << test << endl;
count++; //统计使用次数
}
int count; //内部自己的状态
};
void test02()
{
MyPrint myPrint;
myPrint("hello world");
myPrint("hello world");
myPrint("hello world");
cout << "myPrint调用次数为: " << myPrint.count << endl;
}
//3、函数对象可以作为参数传递
void doPrint(MyPrint& mp, string test)
{
mp(test);
}
void test03()
{
MyPrint myPrint;
doPrint(myPrint, "Hello C++");
}
int main() {
test01();
test02();
test03();
system("pause");
return 0;
}
4.2 谓词
4.2.1 谓词概念
- 返回bool类型的仿函数称为谓词
- 如果operator()接受一个参数,那么叫做一元谓词
-
如果operator()接受两个参数,那么叫做二元谓词
4.2.2 一元谓词
#include <vector>
#include <algorithm>
//1.一元谓词
struct GreaterFive{
bool operator()(int val) {
return val > 5;
}
};
void test01() {
vector<int> v;
for (int i = 0; i < 10; i++)
{
v.push_back(i);
}
//GreaterFive()匿名对象
vector<int>::iterator it = find_if(v.begin(), v.end(), GreaterFive());
if (it == v.end()) {
cout << "没找到!" << endl;
}
else {
cout << "找到:" << *it << endl;
}
}
int main() {
test01();
system("pause");
return 0;
}
4.2.3 二元谓词
#include <vector>
#include <algorithm>
//二元谓词
class MyCompare
{
public:
bool operator()(int num1, int num2)
{
return num1 > num2;
}
};
void test01()
{
vector<int> v;
v.push_back(10);
v.push_back(40);
v.push_back(20);
v.push_back(30);
v.push_back(50);
//默认从小到大
sort(v.begin(), v.end());
for (vector<int>::iterator it = v.begin(); it != v.end(); it++)
{
cout << *it << " ";
}
cout << endl;
cout << "----------------------------" << endl;
//使用函数对象改变算法策略,排序从大到小
sort(v.begin(), v.end(), MyCompare());
for (vector<int>::iterator it = v.begin(); it != v.end(); it++)
{
cout << *it << " ";
}
cout << endl;
}
int main()
{
test01();
system("pause");
return 0;
}
4.3 内建函数对象
4.3.1 内建函数对象意义
概念:STL内建了一些函数对象
分类:
- 算术仿函数
- 关系仿函数
-
逻辑仿函数
用法:
- 这些仿函数所产生的对象,用法和一般函数完全相同;
-
使用内建函数对象,需要引入头文件
#include<functional>。
4.3.2 算术仿函数
功能描述:
- 实现四则运算;
-
其中
negate是一元运算,其他都是二元运算。
仿函数原型:
template<class T> T plus<T>//加法仿函数
template<class T> T minus<T>//减法仿函数
template<class T> T multiplies<T>//乘法仿函数
template<class T> T divides<T>//除法仿函数
template<class T> T modulus<T>//取模仿函数
-
template<class T> T negate<T>//取反仿函数
示例:
#include <functional>
//negate
void test01()
{
negate<int> n;
cout << n(50) << endl;
}
//plus
void test02()
{
plus<int> p;
cout << p(10, 20) << endl;
}
int main() {
test01();
test02();
system("pause");
return 0;
}
4.3.3 关系仿函数
关系仿函数原型:
template<class T> bool equal_to<T>//等于
template<class T> bool not_equal_to<T>//不等于
template<class T> bool greater<T>//大于
template<class T> bool greater_equal<T>//大于等于
template<class T> bool less<T>//小于
-
template<class T> bool less_equal<T>//小于等于
示例:
#include <functional>
#include <vector>
#include <algorithm>
class MyCompare
{
public:
bool operator()(int v1,int v2)
{
return v1 > v2;
}
};
void test01()
{
vector<int> v;
v.push_back(10);
v.push_back(30);
v.push_back(50);
v.push_back(40);
v.push_back(20);
for (vector<int>::iterator it = v.begin(); it != v.end(); it++) {
cout << *it << " ";
}
cout << endl;
//自己实现仿函数
//sort(v.begin(), v.end(), MyCompare());
//STL内建仿函数 大于仿函数
sort(v.begin(), v.end(), greater<int>());
for (vector<int>::iterator it = v.begin(); it != v.end(); it++) {
cout << *it << " ";
}
cout << endl;
}
int main() {
test01();
system("pause");
return 0;
}
4.3.4 逻辑仿函数
逻辑仿函数原型:
template<class T> bool logical_and<T>//逻辑与
template<class T> bool logical_or<T>//逻辑或
-
template<class T> bool logical_not<T>//逻辑非
示例:
#include <vector>
#include <functional>
#include <algorithm>
void test01()
{
vector<bool> v;
v.push_back(true);
v.push_back(false);
v.push_back(true);
v.push_back(false);
for (vector<bool>::iterator it = v.begin();it!= v.end();it++)
{
cout << *it << " ";
}
cout << endl;
//逻辑非 将v容器搬运到v2中,并执行逻辑非运算
vector<bool> v2;
v2.resize(v.size());
transform(v.begin(), v.end(), v2.begin(), logical_not<bool>());
for (vector<bool>::iterator it = v2.begin(); it != v2.end(); it++)
{
cout << *it << " ";
}
cout << endl;
}
int main() {
test01();
system("pause");
return 0;
}
总结:逻辑仿函数实际应用较少,了解即可
5 STL 常用算法
概述:算法主要是由头文件<algorithm> <functional> <numeric>组成。
<algorithm>是STL头文件中最大的,涉及到比较、 交换、查找、遍历操作、复制、修改等等 ;
<numeric>体积很小,只包括几个在序列上面进行简单数学运算的模板函数;
-
<functional>定义了一些模板类,用以声明函数对象。
5.1 常用遍历算法
算法简介:
for_each//遍历容器
-
transform//搬运容器到另一个容器中
5.1.1 for_each
函数原型:
for_each(iterator beg, iterator end, _func);// 遍历算法,遍历容器元素。
-
-
beg开始迭代器; -
end结束迭代器; -
_func函数或者函数对象。
-
示例:
#include <algorithm>
#include <vector>
//普通函数
void print01(int val)
{
cout << val << " ";
}
//函数对象
class print02
{
public:
void operator()(int val)
{
cout << val << " ";
}
};
//for_each算法基本用法
void test01() {
vector<int> v;
for (int i = 0; i < 10; i++)
{
v.push_back(i);
}
//遍历算法
for_each(v.begin(), v.end(), print01);
cout << endl;
for_each(v.begin(), v.end(), print02());
cout << endl;
}
int main() {
test01();
system("pause");
return 0;
}
5.1.2 transform
函数原型:
transform(iterator beg1, iterator end1, iterator beg2, _func);// 搬运容器到另一个容器中。
-
-
beg1源容器开始迭代器; -
end1源容器结束迭代器; -
beg2目标容器开始迭代器; -
_func函数或者函数对象。
-
示例:
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
//常用遍历算法 搬运 transform
class TransForm
{
public:
int operator()(int val)
{
return val;
}
};
class MyPrint
{
public:
void operator()(int val)
{
cout << val << " ";
}
};
void test08()
{
vector<int>v;
for (int i = 0; i < 10; i++)
{
v.push_back(i);
}
vector<int>vTarget; //目标容器
vTarget.resize(v.size()*2); // 目标容器需要提前开辟空间
vector<int>::iterator it = vTarget.begin() + 2;
transform(v.begin(), v.end(), it, TransForm());
for_each(vTarget.begin(), vTarget.end(), MyPrint());
cout << endl;
}
int main() {
test08();
system("pause");
return 0;
}
5.2 常用查找算法
算法简介:
find//查找元素
find_if//按条件查找元素
adjacent_find//查找相邻重复元素
binary_search//二分查找法
count//统计元素个数
-
count_if//按条件统计元素个数
5.2.1 find
函数原型:
find(iterator beg, iterator end, value);// 按值查找元素
-
-
找到返回指定位置迭代器,找不到返回结束迭代器位置;
-
beg开始迭代器; -
end结束迭代器; -
value查找的元素。
-
示例:
#include <algorithm>
#include <vector>
#include <string>
void test01() {
vector<int> v;
for (int i = 0; i < 10; i++) {
v.push_back(i + 1);
}
//查找容器中是否有 5 这个元素
vector<int>::iterator it = find(v.begin(), v.end(), 5);
if (it == v.end())
{
cout << "没有找到!" << endl;
}
else
{
cout << "找到:" << *it << endl;
}
}
class Person {
public:
Person(string name, int age)
{
this->m_Name = name;
this->m_Age = age;
}
//重载==
bool operator==(const Person& p)
{
if (this->m_Name == p.m_Name && this->m_Age == p.m_Age)
{
return true;
}
return false;
}
public:
string m_Name;
int m_Age;
};
void test02() {
vector<Person> v;
//创建数据
Person p1("aaa", 10);
Person p2("bbb", 20);
Person p3("ccc", 30);
Person p4("ddd", 40);
v.push_back(p1);
v.push_back(p2);
v.push_back(p3);
v.push_back(p4);
vector<Person>::iterator it = find(v.begin(), v.end(), p2);
if (it == v.end())
{
cout << "没有找到!" << endl;
}
else
{
cout << "找到姓名:" << it->m_Name << " 年龄: " << it->m_Age << endl;
}
}
总结: 查找自定义数据类型时候,需要配合重载 operator==
5.2.2 find_if
函数原型:
find_if(iterator beg, iterator end, _Pred);// 按条件查找元素
-
-
按值查找元素,找到返回指定位置迭代器,找不到返回结束迭代器位置;
-
beg开始迭代器; -
end结束迭代器; -
_Pred函数或者谓词(返回bool类型的仿函数) 。
-
示例:
#include <algorithm>
#include <vector>
#include <string>
//内置数据类型
class GreaterFive
{
public:
bool operator()(int val)
{
return val > 5;
}
};
void test01() {
vector<int> v;
for (int i = 0; i < 10; i++) {
v.push_back(i + 1);
}
vector<int>::iterator it = find_if(v.begin(), v.end(), GreaterFive());
if (it == v.end()) {
cout << "没有找到!" << endl;
}
else {
cout << "找到大于5的数字:" << *it << endl;
}
}
//自定义数据类型
class Person {
public:
Person(string name, int age)
{
this->m_Name = name;
this->m_Age = age;
}
public:
string m_Name;
int m_Age;
};
class Greater20
{
public:
bool operator()(Person &p)
{
return p.m_Age > 20;
}
};
void test02() {
vector<Person> v;
//创建数据
Person p1("aaa", 10);
Person p2("bbb", 20);
Person p3("ccc", 30);
Person p4("ddd", 40);
v.push_back(p1);
v.push_back(p2);
v.push_back(p3);
v.push_back(p4);
vector<Person>::iterator it = find_if(v.begin(), v.end(), Greater20());
if (it == v.end())
{
cout << "没有找到!" << endl;
}
else
{
cout << "找到姓名:" << it->m_Name << " 年龄: " << it->m_Age << endl;
}
}
int main() {
//test01();
test02();
system("pause");
return 0;
}
总结:find_if按条件查找使查找更加灵活,提供的仿函数可以改变不同的策略
5.2.3 adjacent_find
函数原型:
adjacent_find(iterator beg, iterator end);// 查找相邻重复元素
-
- 查找相邻重复元素,返回相邻元素的第一个位置的迭代器;
beg开始迭代器;end结束迭代器。
示例:
#include <algorithm>
#include <vector>
void test01()
{
vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(5);
v.push_back(2);
v.push_back(4);
v.push_back(4);
v.push_back(3);
//查找相邻重复元素
vector<int>::iterator it = adjacent_find(v.begin(), v.end());
if (it == v.end()) {
cout << "找不到!" << endl;
}
else {
cout << "找到相邻重复元素为:" << *it << endl;
}
}
5.2.4 binary_search
函数原型:
bool binary_search(iterator beg, iterator end, value);// 查找指定元素是否存在
-
-
二分查找指定的元素,查到 返回true 否则false;
-
注意: 在无序序列中不可用;
-
beg开始迭代器; -
end结束迭代器; -
value查找的元素。
-
示例:
#include <algorithm>
#include <vector>
void test01()
{
vector<int>v;
for (int i = 0; i < 10; i++)
{
v.push_back(i);
}
//二分查找
bool ret = binary_search(v.begin(), v.end(),2);
if (ret)
{
cout << "找到了" << endl;
}
else
{
cout << "未找到" << endl;
}
}
int main() {
test01();
system("pause");
return 0;
}
5.2.5 count
函数原型:
count(iterator beg, iterator end, value);// 按值统计元素个数
-
-
beg开始迭代器; -
end结束迭代器; -
value统计的元素。
-
示例:
#include <algorithm>
#include <vector>
//内置数据类型
void test01()
{
vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(4);
v.push_back(5);
v.push_back(3);
v.push_back(4);
v.push_back(4);
int num = count(v.begin(), v.end(), 4);
cout << "4的个数为: " << num << endl;
}
//自定义数据类型
class Person
{
public:
Person(string name, int age)
{
this->m_Name = name;
this->m_Age = age;
}
bool operator==(const Person & p)
{
if (this->m_Age == p.m_Age)
{
return true;
}
else
{
return false;
}
}
string m_Name;
int m_Age;
};
void test02()
{
vector<Person> v;
Person p1("刘备", 35);
Person p2("关羽", 35);
Person p3("张飞", 35);
Person p4("赵云", 30);
Person p5("曹操", 25);
v.push_back(p1);
v.push_back(p2);
v.push_back(p3);
v.push_back(p4);
v.push_back(p5);
Person p("诸葛亮",35);
int num = count(v.begin(), v.end(), p);
cout << "num = " << num << endl;
}
int main() {
//test01();
test02();
system("pause");
return 0;
}
总结: 统计自定义数据类型时候,需要配合重载 operator==
5.2.6 count_if
函数原型:
count_if(iterator beg, iterator end, _Pred);// 按条件统计元素个数
-
-
beg开始迭代器; -
end结束迭代器 -
_Pred谓词
-
示例:
#include <algorithm>
#include <vector>
class Greater4
{
public:
bool operator()(int val)
{
return val >= 4;
}
};
//内置数据类型
void test01()
{
vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(4);
v.push_back(5);
v.push_back(3);
v.push_back(4);
v.push_back(4);
int num = count_if(v.begin(), v.end(), Greater4());
cout << "大于4的个数为: " << num << endl;
}
//自定义数据类型
class Person
{
public:
Person(string name, int age)
{
this->m_Name = name;
this->m_Age = age;
}
string m_Name;
int m_Age;
};
class AgeLess35
{
public:
bool operator()(const Person &p)
{
return p.m_Age < 35;
}
};
void test02()
{
vector<Person> v;
Person p1("刘备", 35);
Person p2("关羽", 35);
Person p3("张飞", 35);
Person p4("赵云", 30);
Person p5("曹操", 25);
v.push_back(p1);
v.push_back(p2);
v.push_back(p3);
v.push_back(p4);
v.push_back(p5);
int num = count_if(v.begin(), v.end(), AgeLess35());
cout << "小于35岁的个数:" << num << endl;
}
int main() {
//test01();
test02();
system("pause");
return 0;
}
5.3 常用排序算法
算法简介:
sort//对容器内元素进行排序
random_shuffle//洗牌 指定范围内的元素随机调整次序
merge// 容器元素合并,并存储到另一容器中
-
reverse// 反转指定范围的元素
5.3.1 sort
函数原型:
sort(iterator beg, iterator end, _Pred);//对容器内元素进行排序
-
-
beg开始迭代器; -
end结束迭代器; -
_Pred谓词。
-
示例:
#include <algorithm>
#include <vector>
void myPrint(int val)
{
cout << val << " ";
}
void test01() {
vector<int> v;
v.push_back(10);
v.push_back(30);
v.push_back(50);
v.push_back(20);
v.push_back(40);
//sort默认从小到大排序
sort(v.begin(), v.end());
for_each(v.begin(), v.end(), myPrint);
cout << endl;
//从大到小排序
sort(v.begin(), v.end(), greater<int>());
for_each(v.begin(), v.end(), myPrint);
cout << endl;
}
int main() {
test01();
system("pause");
return 0;
}
5.3.2 random_shuffle
函数原型:
random_shuffle(iterator beg, iterator end);//洗牌
-
-
指定范围内的元素随机调整次序;
-
beg开始迭代器; -
end结束迭代器。
-
示例:
#include <algorithm>
#include <vector>
#include <ctime>
class myPrint
{
public:
void operator()(int val)
{
cout << val << " ";
}
};
void test01()
{
srand((unsigned int)time(NULL));
vector<int> v;
for(int i = 0 ; i < 10;i++)
{
v.push_back(i);
}
for_each(v.begin(), v.end(), myPrint());
cout << endl;
//打乱顺序
random_shuffle(v.begin(), v.end());
for_each(v.begin(), v.end(), myPrint());
cout << endl;
}
int main() {
test01();
system("pause");
return 0;
}
5.3.3 merge
函数原型:
merge(iterator beg1, iterator end1, iterator beg2, iterator end2, iterator dest);// 两个容器元素合并,并存储到另一容器中
-
- 注意: 两个容器必须是有序的;
beg1容器1开始迭代器;end1容器1结束迭代器;beg2容器2开始迭代器;end2容器2结束迭代器;dest目标容器开始迭代器。
示例:
#include <algorithm>
#include <vector>
class myPrint
{
public:
void operator()(int val)
{
cout << val << " ";
}
};
void test01()
{
vector<int> v1;
vector<int> v2;
for (int i = 0; i < 10 ; i++)
{
v1.push_back(i);
v2.push_back(i + 1);
}
vector<int> vtarget;
//目标容器需要提前开辟空间
vtarget.resize(v1.size() + v2.size());
//合并 需要两个有序序列
merge(v1.begin(), v1.end(), v2.begin(), v2.end(), vtarget.begin());
for_each(vtarget.begin(), vtarget.end(), myPrint());
cout << endl;
}
int main() {
test01();
system("pause");
return 0;
}
5.3.4 reverse
函数原型:
reverse(iterator beg, iterator end);// 将容器内元素进行反转
-
beg开始迭代器;end结束迭代器。
示例:
#include <algorithm>
#include <vector>
class myPrint
{
public:
void operator()(int val)
{
cout << val << " ";
}
};
void test01()
{
vector<int> v;
v.push_back(10);
v.push_back(30);
v.push_back(50);
v.push_back(20);
v.push_back(40);
cout << "反转前: " << endl;
for_each(v.begin(), v.end(), myPrint());
cout << endl;
cout << "反转后: " << endl;
reverse(v.begin(), v.end());
for_each(v.begin(), v.end(), myPrint());
cout << endl;
}
int main() {
test01();
system("pause");
return 0;
}
5.4 常用拷贝和替换算法
算法简介:
copy// 容器内指定范围的元素拷贝到另一容器中
replace// 将容器内指定范围的旧元素修改为新元素
replace_if// 容器内指定范围满足条件的元素替换为新元素
-
swap// 互换两个容器的元素
5.4.1 copy
函数原型:
copy(iterator beg, iterator end, iterator dest);// 按值查找元素,找到返回指定位置迭代器,找不到返回结束迭代器位置。
-
-
beg开始迭代器; -
end结束迭代器; -
dest目标起始迭代器。
-
示例:
#include <algorithm>
#include <vector>
class myPrint
{
public:
void operator()(int val)
{
cout << val << " ";
}
};
void test01()
{
vector<int> v1;
for (int i = 0; i < 10; i++) {
v1.push_back(i + 1);
}
vector<int> v2;
v2.resize(v1.size());
copy(v1.begin(), v1.end(), v2.begin());
for_each(v2.begin(), v2.end(), myPrint());
cout << endl;
}
int main() {
test01();
system("pause");
return 0;
}
总结: 利用copy算法在拷贝时,目标容器记得提前开辟空间
5.4.2 replace
函数原型:
replace(iterator beg, iterator end, oldvalue, newvalue);// 将区间内的 旧元素 替换成 新元素。
-
-
beg开始迭代器; -
end结束迭代器; -
oldvalue旧元素; -
newvalue新元素。
-
示例:
#include <algorithm>
#include <vector>
class myPrint
{
public:
void operator()(int val)
{
cout << val << " ";
}
};
void test01()
{
vector<int> v;
v.push_back(20);
v.push_back(30);
v.push_back(20);
v.push_back(40);
v.push_back(50);
v.push_back(10);
v.push_back(20);
cout << "替换前:" << endl;
for_each(v.begin(), v.end(), myPrint());
cout << endl;
//将容器中的20 替换成 2000
cout << "替换后:" << endl;
replace(v.begin(), v.end(), 20,2000);
for_each(v.begin(), v.end(), myPrint());
cout << endl;
}
int main() {
test01();
system("pause");
return 0;
}
5.4.3 replace_if
函数原型:
replace_if(iterator beg, iterator end, _pred, newvalue);// 按条件替换元素,满足条件的替换成指定元素。
-
-
beg开始迭代器; -
end结束迭代器; -
_pred谓词(设置筛选条件); -
newvalue替换的新元素。
-
示例:
#include <algorithm>
#include <vector>
class myPrint
{
public:
void operator()(int val)
{
cout << val << " ";
}
};
class ReplaceGreater30
{
public:
bool operator()(int val)
{
return val >= 30;
}
};
void test01()
{
vector<int> v;
v.push_back(20);
v.push_back(30);
v.push_back(20);
v.push_back(40);
v.push_back(50);
v.push_back(10);
v.push_back(20);
cout << "替换前:" << endl;
for_each(v.begin(), v.end(), myPrint());
cout << endl;
//将容器中大于等于的30 替换成 3000
cout << "替换后:" << endl;
replace_if(v.begin(), v.end(), ReplaceGreater30(), 3000);
for_each(v.begin(), v.end(), myPrint());
cout << endl;
}
int main() {
test01();
system("pause");
return 0;
}
5.4.4 swap
函数原型:
swap(container c1, container c2);// 互换两个容器的元素。
-
-
c1容器1; -
c2容器2。
-
示例:
#include <algorithm>
#include <vector>
class myPrint
{
public:
void operator()(int val)
{
cout << val << " ";
}
};
void test01()
{
vector<int> v1;
vector<int> v2;
for (int i = 0; i < 10; i++) {
v1.push_back(i);
v2.push_back(i+100);
}
cout << "交换前: " << endl;
for_each(v1.begin(), v1.end(), myPrint());
cout << endl;
for_each(v2.begin(), v2.end(), myPrint());
cout << endl;
cout << "交换后: " << endl;
swap(v1, v2);
for_each(v1.begin(), v1.end(), myPrint());
cout << endl;
for_each(v2.begin(), v2.end(), myPrint());
cout << endl;
}
int main() {
test01();
system("pause");
return 0;
}
总结: swap交换容器时,注意交换的容器要同种类型
5.5 常用算术生成算法
算法简介:
accumulate// 计算容器元素累计总和
-
fill// 向容器中添加元素
注意:算术生成算法属于小型算法,使用时包含的头文件为 #include <numeric>
5.5.1 accumulate
函数原型:
accumulate(iterator beg, iterator end, value);// 计算容器元素累计总和
-
-
beg开始迭代器; -
end结束迭代器; -
value起始值。
-
示例:
#include <numeric>
#include <vector>
void test01()
{
vector<int> v;
for (int i = 0; i <= 100; i++) {
v.push_back(i);
}
int total = accumulate(v.begin(), v.end(), 0);
cout << "total = " << total << endl;
}
int main() {
test01();
system("pause");
return 0;
}
5.5.2 fill
函数原型:
fill(iterator beg, iterator end, value);// 将容器区间内元素填充为 指定的值。
-
-
beg开始迭代器; -
end结束迭代器; -
value填充的值。
-
示例:
#include <numeric>
#include <vector>
#include <algorithm>
class myPrint
{
public:
void operator()(int val)
{
cout << val << " ";
}
};
void test01()
{
vector<int> v;
v.resize(10);
//填充
fill(v.begin(), v.end(), 100);
for_each(v.begin(), v.end(), myPrint());
cout << endl;
}
int main() {
test01();
system("pause");
return 0;
}
5.6 常用集合算法
算法简介:
set_intersection// 求两个容器的交集
set_union// 求两个容器的并集
-
set_difference// 求两个容器的差集
5.6.1 set_intersection
函数原型:
set_intersection(iterator beg1, iterator end1, iterator beg2, iterator end2, iterator dest);// 求两个集合的交集。
-
-
两个集合必须是有序序列;
-
beg1容器1开始迭代器; -
end1容器1结束迭代器; -
beg2容器2开始迭代器; -
end2容器2结束迭代器; -
dest目标容器开始迭代器。
-
示例:
#include <vector>
#include <algorithm>
class myPrint
{
public:
void operator()(int val)
{
cout << val << " ";
}
};
void test01()
{
vector<int> v1;
vector<int> v2;
for (int i = 0; i < 10; i++)
{
v1.push_back(i);
v2.push_back(i+5);
}
vector<int> vTarget;
//取两个里面较小的值给目标容器开辟空间
vTarget.resize(min(v1.size(), v2.size()));
//返回目标容器的最后一个元素的迭代器地址
vector<int>::iterator itEnd =
set_intersection(v1.begin(), v1.end(), v2.begin(), v2.end(), vTarget.begin());
for_each(vTarget.begin(), itEnd, myPrint());
cout << endl;
}
int main() {
test01();
system("pause");
return 0;
}
总结:
- 求交集的两个集合必须的有序序列;
- 目标容器开辟空间需要从两个容器中取小值;
-
set_intersection返回值既是交集中最后一个元素的位置。
5.6.2 set_union
函数原型:
set_union(iterator beg1, iterator end1, iterator beg2, iterator end2, iterator dest);// 求两个集合的并集。
-
- 注意:两个集合必须是有序序列;
beg1容器1开始迭代器;end1容器1结束迭代器;beg2容器2开始迭代器;end2容器2结束迭代器;dest目标容器开始迭代器。
示例:
#include <vector>
#include <algorithm>
class myPrint
{
public:
void operator()(int val)
{
cout << val << " ";
}
};
void test01()
{
vector<int> v1;
vector<int> v2;
for (int i = 0; i < 10; i++) {
v1.push_back(i);
v2.push_back(i+5);
}
vector<int> vTarget;
//取两个容器的和给目标容器开辟空间
vTarget.resize(v1.size() + v2.size());
//返回目标容器的最后一个元素的迭代器地址
vector<int>::iterator itEnd =
set_union(v1.begin(), v1.end(), v2.begin(), v2.end(), vTarget.begin());
for_each(vTarget.begin(), itEnd, myPrint());
cout << endl;
}
int main() {
test01();
system("pause");
return 0;
}
总结:
- 求并集的两个集合必须的有序序列;
- 目标容器开辟空间需要两个容器相加;
-
set_union返回值既是并集中最后一个元素的位置。
5.6.3 set_difference
函数原型:
set_difference(iterator beg1, iterator end1, iterator beg2, iterator end2, iterator dest);// 求两个集合的差集。
-
-
注意:两个集合必须是有序序列;
-
beg1容器1开始迭代器; -
end1容器1结束迭代器; -
beg2容器2开始迭代器; -
end2容器2结束迭代器; -
dest目标容器开始迭代器。
-
示例:
#include <vector>
#include <algorithm>
class myPrint
{
public:
void operator()(int val)
{
cout << val << " ";
}
};
void test01()
{
vector<int> v1;
vector<int> v2;
for (int i = 0; i < 10; i++) {
v1.push_back(i);
v2.push_back(i+5);
}
vector<int> vTarget;
//取两个里面较大的值给目标容器开辟空间
vTarget.resize( max(v1.size() , v2.size()));
//返回目标容器的最后一个元素的迭代器地址
cout << "v1与v2的差集为: " << endl;
vector<int>::iterator itEnd =
set_difference(v1.begin(), v1.end(), v2.begin(), v2.end(), vTarget.begin());
for_each(vTarget.begin(), itEnd, myPrint());
cout << endl;
cout << "v2与v1的差集为: " << endl;
itEnd = set_difference(v2.begin(), v2.end(), v1.begin(), v1.end(), vTarget.begin());
for_each(vTarget.begin(), itEnd, myPrint());
cout << endl;
}
int main() {
test01();
system("pause");
return 0;
}
总结:
- 求差集的两个集合必须的有序序列;
- 目标容器开辟空间需要从两个容器取较大值;
- set_difference返回值既是差集中最后一个元素的位置。