一、前言
贝塞尔曲线自定义波浪效果的案例很多,同样方法也很简单,大多数和本案例一样使用二次贝塞尔曲线实现,同样还有一种是 正弦或者余弦 实现的方式,这里我们后续补充,先来看贝塞尔曲线的实现方式。
二、代码实现
本案例难点:
①波形图的运动,我们需要在 坐标点 x 负方向绘制一个完整的波形,当波形运动到 0 点之后自动从恢复原始位置。
②渐变实现,这里使用 LinearGradient,主要是渐变方向,当起始横轴为 0 坐标,纵轴不为 0,渐变方向才为纵向。
解决方法: 当片一位置大于波长时减去播放
top和bottom控制波的高低
代码如下:
public class WaveView extends View {
private TextPaint mPaint;
private float dx = 0f;
private float dx2 = 0f;
private float mfactory = 3f / 5; //波浪因数,用于决定波长
public WaveView(Context context) {
this(context, null);
}
public WaveView(Context context, @Nullable AttributeSet attrs) {
this(context, attrs, 0);
}
public WaveView(Context context, @Nullable AttributeSet attrs, int defStyleAttr) {
super(context, attrs, defStyleAttr);
initPaint();
}
private void initPaint() {
// 实例化画笔并打开抗锯齿
mPaint = new TextPaint(Paint.ANTI_ALIAS_FLAG);
mPaint.setAntiAlias(true);
mPaint.setPathEffect(new CornerPathEffect(10)); //设置线条类型
mPaint.setStrokeWidth(dip2px(1));
mPaint.setTextSize(dip2px((12)));
mPaint.setStyle(Paint.Style.STROKE);
}
@Override
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
super.onMeasure(widthMeasureSpec, heightMeasureSpec);
super.onMeasure(widthMeasureSpec, heightMeasureSpec);
int widthMode = MeasureSpec.getMode(widthMeasureSpec);
int width = MeasureSpec.getSize(widthMeasureSpec);
int heightMode = MeasureSpec.getMode(heightMeasureSpec);
int height = MeasureSpec.getSize(heightMeasureSpec);
if (widthMode != MeasureSpec.EXACTLY) {
width = (int) dip2px(300);
}
if (heightMode != MeasureSpec.EXACTLY) {
height = (int) dip2px(100);
}
setMeasuredDimension(width, height);
}
public float dip2px(int dp) {
return TypedValue.applyDimension(TypedValue.COMPLEX_UNIT_DIP, dp, getResources().getDisplayMetrics());
}
@Override
protected void onDraw(Canvas canvas) {
super.onDraw(canvas);
if (getWidth() < 1 || getHeight() < 1) return;
int saveCount = canvas.save();
canvas.translate(0, getHeight() / 2F);
drawWave(canvas);
canvas.restoreToCount(saveCount);
}
Path pathM = new Path();
Path pathN = new Path();
LinearGradient linearGradient1 = null;
LinearGradient linearGradient2 = null;
private void drawWave(Canvas canvas) {
float waveLength = getWidth() * mfactory; //波长
float top = -50;
float bottom = 50;
int N = (int) Math.ceil(getWidth() / waveLength);
//最大整数,标示view宽度中能容纳的波的数量
if (N == 0) return;
pathM.reset();
pathN.reset();
for (int i = -1; i < N; i++) {
buildWavePath(pathM, dx,i, waveLength, top, bottom);
buildWavePath(pathN, dx2,i, waveLength, top, bottom);
}
float startX = waveLength * (-1) + dx;
float endX = waveLength * N + dx;
float startX2 = waveLength * (-1) + dx2;
float endX2 = waveLength * N + dx2;
pathM.lineTo(endX, bottom);
pathM.lineTo(startX, bottom);
pathN.lineTo(endX2, bottom);
pathN.lineTo(startX2, bottom);
pathM.close();
pathN.close();
mPaint.setStyle(Paint.Style.FILL);
if (linearGradient1 == null) {
linearGradient1 = new LinearGradient(0, top, 0, bottom, new int[]{
argb((float) Math.random(), (float) Math.random(), (float) Math.random()),
argb((float) Math.random(), (float) Math.random(), (float) Math.random())
}, new float[]{0.2f, 0.8f}, Shader.TileMode.CLAMP);
}
if (linearGradient2 == null) {
linearGradient2 = new LinearGradient(0, top, 0, bottom, new int[]{
argb((float) Math.random(), (float) Math.random(), (float) Math.random()),
argb((float) Math.random(), (float) Math.random(), (float) Math.random())
}, new float[]{0.2f, 0.8f}, Shader.TileMode.CLAMP);
}
Shader shader = mPaint.getShader();
mPaint.setShader(linearGradient1);
canvas.drawPath(pathM, mPaint);
mPaint.setShader(linearGradient2);
canvas.drawPath(pathN, mPaint);
mPaint.setShader(shader);
dx += 5;
dx2 += 2;
if (dx > waveLength) {
dx = dx - waveLength;
}
if (dx2 > waveLength) {
dx2 = dx2 - waveLength;
}
}
public static int argb(float red, float green, float blue) {
return ((int) (1 * 125.0f + 0.5f) << 24) |
((int) (red * 255.0f + 0.5f) << 16) |
((int) (green * 255.0f + 0.5f) << 8) |
(int) (blue * 255.0f + 0.5f);
}
private void buildWavePath(Path path,float offset, int ith, float waveLength, float top, float bottom) {
float offsetLeft = waveLength * ith + offset;
if (ith == -1) {
path.moveTo(offsetLeft, 0);
}
path.quadTo(offsetLeft + waveLength / 4f, top, offsetLeft + waveLength / 2f, 0);
path.quadTo(offsetLeft + waveLength * 3f / 4f, bottom, offsetLeft + waveLength, 0);
}
public void startAnim() {
ValueAnimator animator = ValueAnimator.ofFloat(0, 1F);
animator.setDuration(2000);
animator.setRepeatCount(ValueAnimator.INFINITE);
animator.setInterpolator(new LinearInterpolator());
animator.addUpdateListener(new ValueAnimator.AnimatorUpdateListener() {
@Override
public void onAnimationUpdate(ValueAnimator animation) {
postInvalidate();
}
});
animator.start();
}
}
三、总结
贝塞尔曲线作为计算机图形学很重要的部份,可以实现复杂的效果和矢量图形,比如字体的设计大量使用贝塞尔曲线,本篇简单介绍一下最基本的使用,希望对大家有所帮助。