123.买卖股票的最佳时机 III
题目描述
给定一个数组,它的第 **i
个元素是一支给定的股票在第 i
**天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。
注意: 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入: prices = [3,3,5,0,0,3,1,4] 输出: 6 解释: 在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。 随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。
示例 2:
输入: prices = [1,2,3,4,5] 输出: 4 解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。 注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。 因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
示例 3:
输入: prices = [7,6,4,3,1] 输出: 0 解释: 在这个情况下, 没有交易完成, 所以最大利润为 0。
示例 4:
输入: prices = [1] 输出: 0
提示:
1 <= prices.length <= 10^5
0 <= prices[i] <= 10^5
地址
解题方法
class Solution {
public int maxProfit(int[] prices) {
int[][] dp = new int[prices.length][5];
dp[0][1] = -prices[0];
dp[0][3] = -prices[0];
for (int i = 1; i < prices.length; i++) {
dp[i][0] = dp[i - 1][0];
dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
dp[i][2] = Math.max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
dp[i][3] = Math.max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
dp[i][4] = Math.max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
}
return Math.max(dp[prices.length - 1][2], dp[prices.length - 1][4]);
}
}
复杂度分析
- 时间复杂度:O(n),其中 n 是数组元素数
- 空间复杂度:O(n),其中 n 是数组元素数