AbstractQueuedSynchronizer是一个多线程资源管理的框架,ReentrantLock的内部,也是基于AQS进行的实现。
Node
又看到了喜闻乐见的Node了。AQS里面也维护了一个Node用于抽象资源,下面看一下Node里面的属性以及方法
static final class Node {
/** Marker to indicate a node is waiting in shared mode */
// 节点正在共享模式下等待标记
// 这里可以看出,Node默认是共享模式
static final Node SHARED = new Node();
/** Marker to indicate a node is waiting in exclusive mode */
// 节点正在独占模式下等待标记
static final Node EXCLUSIVE = null;
/** waitStatus value to indicate thread has cancelled. */
// waitStatus的一个值,指示线程已取消
static final int CANCELLED = 1;
/** waitStatus value to indicate successor's thread needs unparking. */
// 表示后续线程需要唤醒
static final int SIGNAL = -1;
/** waitStatus value to indicate thread is waiting on condition. */
// 表示线程正在等待条件
static final int CONDITION = -2;
/**
* waitStatus value to indicate the next acquireShared should
* unconditionally propagate.
*/
// 下一个获取共享资源的操作应无条件地传播。
static final int PROPAGATE = -3;
/**
* Status field, taking on only the values:
* SIGNAL: The successor of this node is (or will soon be)
* blocked (via park), so the current node must
* unpark its successor when it releases or
* cancels. To avoid races, acquire methods must
* first indicate they need a signal,
* then retry the atomic acquire, and then,
* on failure, block.
* CANCELLED: This node is cancelled due to timeout or interrupt.
* Nodes never leave this state. In particular,
* a thread with cancelled node never again blocks.
* CONDITION: This node is currently on a condition queue.
* It will not be used as a sync queue node
* until transferred, at which time the status
* will be set to 0. (Use of this value here has
* nothing to do with the other uses of the
* field, but simplifies mechanics.)
* PROPAGATE: A releaseShared should be propagated to other
* nodes. This is set (for head node only) in
* doReleaseShared to ensure propagation
* continues, even if other operations have
* since intervened.
* 0: None of the above
*
* The values are arranged numerically to simplify use.
* Non-negative values mean that a node doesn't need to
* signal. So, most code doesn't need to check for particular
* values, just for sign.
*
* The field is initialized to 0 for normal sync nodes, and
* CONDITION for condition nodes. It is modified using CAS
* (or when possible, unconditional volatile writes).
*/
// 这个值用户表示等待状态
volatile int waitStatus;
/**
* Link to predecessor node that current node/thread relies on
* for checking waitStatus. Assigned during enqueuing, and nulled
* out (for sake of GC) only upon dequeuing. Also, upon
* cancellation of a predecessor, we short-circuit while
* finding a non-cancelled one, which will always exist
* because the head node is never cancelled: A node becomes
* head only as a result of successful acquire. A
* cancelled thread never succeeds in acquiring, and a thread only
* cancels itself, not any other node.
*/
// 上一个节点
volatile Node prev;
/**
* Link to the successor node that the current node/thread
* unparks upon release. Assigned during enqueuing, adjusted
* when bypassing cancelled predecessors, and nulled out (for
* sake of GC) when dequeued. The enq operation does not
* assign next field of a predecessor until after attachment,
* so seeing a null next field does not necessarily mean that
* node is at end of queue. However, if a next field appears
* to be null, we can scan prev's from the tail to
* double-check. The next field of cancelled nodes is set to
* point to the node itself instead of null, to make life
* easier for isOnSyncQueue.
*/
// 下一个节点
volatile Node next;
/**
* The thread that enqueued this node. Initialized on
* construction and nulled out after use.
*/
volatile Thread thread;
/**
* Link to next node waiting on condition, or the special
* value SHARED. Because condition queues are accessed only
* when holding in exclusive mode, we just need a simple
* linked queue to hold nodes while they are waiting on
* conditions. They are then transferred to the queue to
* re-acquire. And because conditions can only be exclusive,
* we save a field by using special value to indicate shared
* mode.
*/
// 下一个等待者
Node nextWaiter;
/**
* Returns true if node is waiting in shared mode.
*/
final boolean isShared() {
return nextWaiter == SHARED;
}
/**
* Returns previous node, or throws NullPointerException if null.
* Use when predecessor cannot be null. The null check could
* be elided, but is present to help the VM.
*
* @return the predecessor of this node
*/
// 返回上一个节点
final Node predecessor() {
Node p = prev;
if (p == null)
throw new NullPointerException();
else
return p;
}
/** Establishes initial head or SHARED marker. */
Node() {}
/** Constructor used by addWaiter. */
Node(Node nextWaiter) {
this.nextWaiter = nextWaiter;
THREAD.set(this, Thread.currentThread());
}
/** Constructor used by addConditionWaiter. */
Node(int waitStatus) {
WAITSTATUS.set(this, waitStatus);
THREAD.set(this, Thread.currentThread());
}
/** CASes waitStatus field. */
final boolean compareAndSetWaitStatus(int expect, int update) {
return WAITSTATUS.compareAndSet(this, expect, update);
}
/** CASes next field. */
final boolean compareAndSetNext(Node expect, Node update) {
return NEXT.compareAndSet(this, expect, update);
}
final void setPrevRelaxed(Node p) {
PREV.set(this, p);
}
// VarHandle mechanics
private static final VarHandle NEXT;
private static final VarHandle PREV;
private static final VarHandle THREAD;
private static final VarHandle WAITSTATUS;
static {
try {
// MethodHandles.lookup() 提供了一种动态的方式来获取和操作方法句柄,同时确保了安全性和权限。
MethodHandles.Lookup l = MethodHandles.lookup();
NEXT = l.findVarHandle(Node.class, "next", Node.class);
PREV = l.findVarHandle(Node.class, "prev", Node.class);
THREAD = l.findVarHandle(Node.class, "thread", Thread.class);
WAITSTATUS = l.findVarHandle(Node.class, "waitStatus", int.class);
} catch (ReflectiveOperationException e) {
throw new ExceptionInInitializerError(e);
}
}
}
从Node的属性可以看到,node是一个存放着Thread的,且维护着节点状态的双向链表
VarHandle (jdk9 以后支持)
VarHandle 提供了一组方法,允许你以原子或非原子的方式读取、写入、更新变量的值,还支持其他操作,如比较并交换。它的目标是提供更细粒度的控制,同时确保线程安全性和可见性。
acquire() 方法
上面介绍完对应的Node属性,下面要找一个入口,看看是怎么实现加锁操作的,那么怎么找这个入口呢?
java中ReentrantLock的lock()方法,调用的是内部维护的一个Sync类,这个类就是继承了AQS,那我们可以通过它,看一下lock()加锁操作是调用的哪个方法。(其实跟着注释一点一点的看也是可以的,所以接口注释还是很重要的)
abstract static class Sync extends AbstractQueuedSynchronizer
/**
* Acquires the lock.
*
* <p>Acquires the lock if it is not held by another thread and returns
* immediately, setting the lock hold count to one.
*
* <p>If the current thread already holds the lock then the hold
* count is incremented by one and the method returns immediately.
*
* <p>If the lock is held by another thread then the
* current thread becomes disabled for thread scheduling
* purposes and lies dormant until the lock has been acquired,
* at which time the lock hold count is set to one.
*/
public void lock() {
sync.acquire(1);
}
那么很明显了,入口就是acquire()方法
/**
* Acquires in exclusive mode, ignoring interrupts. Implemented
* by invoking at least once {@link #tryAcquire},
* returning on success. Otherwise the thread is queued, possibly
* repeatedly blocking and unblocking, invoking {@link
* #tryAcquire} until success. This method can be used
* to implement method {@link Lock#lock}.
*
* @param arg the acquire argument. This value is conveyed to
* {@link #tryAcquire} but is otherwise uninterpreted and
* can represent anything you like.
*/
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
调用了四个方法,tryAcquire(),addWaiter(),acquireQueued(),selfInterrupt()
先简单介绍一下流程:
- tryAcquire()方法,尝试获取一下锁,获取成功了直接不执行&&后面的语句
- tryAcquire()获取锁失败,先调用addWaiter(Node.EXCLUSIVE)方法
- 这里的Node.EXCLUSIVE表示,当前的lock是独占模式
- 在addWaiter()方法里,有一个自旋,CAS放入Head和Tail,因为可能会有多个线程同时进来addWaiter()方法这个时候,如果不加乐观锁, 会导致node节点丢失,比如两个线程同时进来,这个时候应该要生成两个node,如果只加了if条件,没有加乐观锁,去添加tail节点,那么tail会被后 进来的node覆盖掉
- addWaiter() 方法执行成功以后,会返回含有当前线程的node,并且已经初始化好了Head和tail这两个头尾节点
- 调用acquireQueued()方法,这个方法会决定当前的线程是不是需要挂起等待
- 判断当前节点的前一个节点,是不是head,是的话尝试去获取锁,拿到了锁以后,把head设置为当前节点,旧的head释放掉,返回false,告诉上级 方法, 当前线程没有中断
- 如果当前节点不是头结点,或者没有获取到锁,则会判断当前线程需不需要被挂起为watting状态
- 这时候会取当前node的pred(前一个节点)的waitStatus(默认是0),
- 如果pred的waitStatus = Node.SIGNAL(-1),直接返回true
- 如果pred的waitStatus > 0,说明pred节点已经被打上了中断标记,这时候直接遍历前面的node,找出waitStatus>0的出队 直到waitStatus<=0为止,把它的next设置为当前node,node的prev设置为找到的节点,饭后返回false
- 如果pred的waitStatus为其他状态,则修改为 Node.SIGNAL,然后返回false
- 当acquireQueued返回true的时候,就会执行selfInterrupt()方法
- selfInterrupt方法会把当前线程中断
tryAcquire() 尝试获取
protected boolean tryAcquire(int arg) {
throw new UnsupportedOperationException();
}
在AbstractQueuedSynchronizer中,tryAcquire()是个抽象方法,如果你不重写它,那调用它就会报错
这里可以看下ReentrantLock的实现,ReentrantLock有两个实现,一个公平锁,一个非公平锁
// 公平锁实现
protected final boolean tryAcquire(int acquires) {
final Thread current = Thread.currentThread();
// state表示锁被同一个线程获取的次数
int c = getState();
if (c == 0) {
// 判断有无在等待的队列,有返回true,没有返回false
if (!hasQueuedPredecessors() &&
// 前面没有队列,则修改内部STATE的状态值 一般是 0->1
// 其实这里就是通过原子的方式修改state = 1
compareAndSetState(0, acquires)) {
// 把当前线程放入独占线程
setExclusiveOwnerThread(current);
return true;
}
}
// 判断当前线程是否跟独占线程为同一个线程
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
// 设置state
setState(nextc);
return true;
}
return false;
}
// 非公平锁实现
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
// 没有加锁
if (c == 0) {
// 调用父类compareAndSetState方法,原子修改state状态
if (compareAndSetState(0, acquires)) {
//设置独占线程
setExclusiveOwnerThread(current);
return true;
}
}
// 有锁,判断当前线程与持有锁的线程是否同一个线程
// 可重入锁,就是在这里实现的
else if (current == getExclusiveOwnerThread()) {
//
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
// state= c + acquires (acquires一般为1)
setState(nextc);
return true;
}
return false;
}
FairSync的hasQueuedPredecessors()方法
public final boolean hasQueuedPredecessors() {
Node h, s;
if ((h = head) != null) {
if ((s = h.next) == null || s.waitStatus > 0) {
s = null; // traverse in case of concurrent cancellation
for (Node p = tail; p != h && p != null; p = p.prev) {
if (p.waitStatus <= 0)
s = p;
}
}
if (s != null && s.thread != Thread.currentThread())
return true;
}
return false;
}
这个方法是看头部有没有在等待的Node,有的话返回true,没有的话,返回false
addWaiter()
private Node addWaiter(Node mode) {
Node node = new Node(mode);
// 串一下这里的操作
// 首先取尾部的node出来
// 判断尾部是不是空的,是空的,就调用initializeSyncQueue初始化一下队列,创建一个空的node到头尾
// 如果尾部有值,把维护的上一个节点换成oldTail
// 然后把尾部的值设置成当新的node
// 把oldTail.next 设置为新的node
// 把新的node返回出去
for (;;) {
Node oldTail = tail;
if (oldTail != null) {
node.setPrevRelaxed(oldTail);
if (compareAndSetTail(oldTail, node)) {
oldTail.next = node;
return node;
}
} else {
initializeSyncQueue();
}
}
}
acquireQueued
final boolean acquireQueued(final Node node, int arg) {
boolean interrupted = false;
try {
for (;;) {
// 获取上一个节点
final Node p = node.predecessor();
// 如果是头节点 且能获取到同步状态
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
return interrupted;
}
// 获取同步状态失败后,判断当前节点需不需要挂起
if (shouldParkAfterFailedAcquire(p, node))
// 这里是一个或等操作
// 先进行或操作,再赋值 false | true = true
// booleanA | booleanB ,B为false,则A不变
interrupted |= parkAndCheckInterrupt();
}
} catch (Throwable t) {
cancelAcquire(node);
if (interrupted)
selfInterrupt();
throw t;
}
}
shouldParkAfterFailedAcquire()
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
int ws = pred.waitStatus;
// 前一个节点的状态,如果是SIGNAL(-1)说明上一个节点已经设置了释放状态了,当前节点可以安全挂起(park)
if (ws == Node.SIGNAL)
/*
* This node has already set status asking a release
* to signal it, so it can safely park.
*/
return true;
// wa>0 对应的就是cancel(1)状态,说明前一个节点被中断了
// 这时需要向前遍历,把cancel状态的node出队,找到waitStatus<=0的节点为止
if (ws > 0) {
/*
* Predecessor was cancelled. Skip over predecessors and
* indicate retry.
*/
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
} else {
/*
* waitStatus must be 0 or PROPAGATE. Indicate that we
* need a signal, but don't park yet. Caller will need to
* retry to make sure it cannot acquire before parking.
*/
// 如果前一个节点的状态是<=0的,则把preNode的waitStatus改为Node.SIGNAL()
pred.compareAndSetWaitStatus(ws, Node.SIGNAL);
}
return false;
}
shouldParkAfterFailedAcquire()方法是用于在尝试获取同步状态失败后,判断当前线程是否应该挂起(park) 其实这里对当前节点的关注不大,主要操作的是pred,前一个节点 pred节点,如果是Node.SIGNAL状态,就返回true,说明可以被安全挂起 如果前一个节点被中断了,就向前遍历,把cancel的节点全部出队,然后返回false,说明不能安全挂起 如果前一个节点是其他状态,则把前一个节点的waitStates设置为挂起,然后返回false
parkAndCheckInterrupt()
/**
* Convenience method to park and then check if interrupted.
*
* @return {@code true} if interrupted
*/
private final boolean parkAndCheckInterrupt() {
// 前面都是在维护node的队列queue和状态
// 执行到这里,才是真的挂起了线程
// LockSupport.park(this),挂起当前线程,进入waiting状态
LockSupport.park(this);
// Thread.interrupted():返回当前线程的中断状态,并清除中断状态。
// 如果线程在挂起的过程中被中断过,那么 Thread.interrupted() 返回 true,否则返回 false
return Thread.interrupted();
}
执行到parkAndCheckInterrupt()方法的时候,才是真正的挂起了线程,把线程的状态改为waiting状态,然后返回线程是否中断。
release() 释放锁
public final boolean release(int arg) {
// 尝试释放锁
if (tryRelease(arg)) {
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);
return true;
}
return false;
}
tryRelease() state为0的时候,才算是释放了锁
@ReservedStackAccess
protected final boolean tryRelease(int releases) {
// 获取state-releases 一般releases = 1
int c = getState() - releases;
// 判断当前的线程是不是独占线程,不是的话就报错
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
boolean free = false;
// c==0 释放掉独占的线程
if (c == 0) {
free = true;
setExclusiveOwnerThread(null);
}
// state设置为0
setState(c);
return free;
}
unparkSuccessor()唤醒等待的线程
private void unparkSuccessor(Node node) {
/*
* If status is negative (i.e., possibly needing signal) try
* to clear in anticipation of signalling. It is OK if this
* fails or if status is changed by waiting thread.
*/
int ws = node.waitStatus;
// 把小于的状态设置为0
if (ws < 0)
node.compareAndSetWaitStatus(ws, 0);
/*
* Thread to unpark is held in successor, which is normally
* just the next node. But if cancelled or apparently null,
* traverse backwards from tail to find the actual
* non-cancelled successor.
*/
Node s = node.next;
// 如果下个节点为空或者 s.waitStatus > 0 (cancel)则从尾部向前遍历,获取最前的一个node<=0的node
if (s == null || s.waitStatus > 0) {
s = null;
for (Node p = tail; p != node && p != null; p = p.prev)
if (p.waitStatus <= 0)
s = p;
}
if (s != null)
// 唤醒线程parkAndCheckInterrupt()中阻塞的线程会被唤醒
LockSupport.unpark(s.thread);
}
tips
& 和 && 非短路与和短路与操作,短路与是,第一个值为false时,不会执行第二个值的操作,非短路则会执行 所以 String a = null时, a != null && !a.equals(""),这个操作不会空指针异常,a != null & !a.equals("") 则会
ReentrantLock是独占锁,使用了AQS中的独占锁部分,如果是共享锁,则有ReentrantReadWriteLock,读写锁