Chapter 31 Feedback Amplifiers

103 阅读2分钟

Chapter 31 Feedback Amplifiers

这一章我们介绍feedback 反馈运放的原理. 负反馈是模拟电路强有力的工具.

1. The Feedback Equation

反馈系统如下图所示

Aol=amp open-loop gain即开环增益. Aol=xo/xi

β\beta 是 feedback factor

β=xfxo\beta=\frac{x_{f}}{x_{o}}

Closed-loop gain, Acl

ACL=xoxs=AOL1+AOLβA_{CL}=\frac{x_{o}}{x_{s}}=\frac{A_{OL}}{1+A_{OL}\beta}

Loop gain = T= AOLβA_{OL}\beta , 用来判断环路稳定性

2. Properties of Negative Feedback on Amplifier Design

负反馈有几大好处: 降低gain的工艺偏差, 减少非线性失真, 拓展op-amp的有用bandwidth, 控制输入和输出阻抗.

Gain Desensitivity

将上公式取导

dACLACL=11+AOLβdAOLAOL\frac{dA_{CL}}{A_{CL}}=\frac{1}{1+A_{OL}\beta}\frac{dA_{OL}}{A_{OL}}

因为Loop gain T很大, closed-loop gain Acl 的变化对比AOL的变化很小.

Bandwidth Extension

open-loop 传输函数的pole为WH. 经过负反馈后, closed-loop传输函数 的pole为WH=(1+Aol*beta). pole扩展了(1+Loop Gain)倍.

当beta=1, pole最大, 为GBW, 当beta=0, 回到open-loop 场景.

Reduction in Nonlinear Distortion

负反馈可以改善op-amp的非线性行为, 如下图所示:

Input and Output Impedance Control

如下图所示, Ri和Ro是开环输入/输出阻抗, Rinf和Rof是闭环输入/输出阻抗.

负反馈可以增加或者降低闭环输入/输出阻抗 (1 + AOL*beta)倍.

闭环输入/输出阻抗取决于输入/输出类型是电压还是电流. 如下图所示.

输入类型是电压 (串联), 闭环输入阻抗增大 (1 + AOL* beta)倍. 输入类型是电流(并联), 闭环输入阻抗减小 (1 + AOL* beta)倍.

输出类型是电压(并联), 闭环输出阻抗减小 (1+AOL* beta)倍. 输出类型是电流(串联), 闭环输出阻抗增大(1+AOL* beta)倍.

3. Recognizing Feedback Topologies

根据输入/输出是电压还是电流信号, 可以把反馈分为四类:

输入是电压为series串联(voltage mixing), 输入是电流为shunt并联(voltage mixing).

输出是电压为shunt并联(voltage sampling), 输出是电流为series串联(current sampling).

在计算 AOL, 需要注意由于加入负反馈beta网络和其他source对其load的影响.

Input Mixing and Output Sampling

load和feedback network接到同一点的为shunt, 串联在一起的为series.

The Feedback Network

几点rule:

1, forward path是gain最大的通路

2, ac小信号从gate或者source进入, 从drain或者source离开. 从drain到source的增益忽略不计.

3, 每次从gate-to-drain, 小信号符号反向.

上图展示了series-series和shunt-shunt结构.

a)中vi=vs-vf, 因此vf符号为正, vf越大, 输入信号vs越小, 形成负反馈.

b)中VGG 是DC voltage source, ii=is-if,也是相似道理.

Calculating Open-Loop Parameters

In real-life applications, the beta network can cause loading effects on both the input source and the output of the amplifier circuit.

注意在计算open-loop gain时, 需要考虑beta network给输入和输出带来的影响.

计算Rbeta_i和Rbeta_o时, 遵循shunt 就 short(短路)另外一端, series 就sever(开路)另外一端.

例如计算Rbi, 如果输出时shunt, 就短路输出, 再计算Rbi.

Calculating Closed-Loop Parameters

如前面所说, Closed-loop gain:

ACL=xoxs=AOL1+AOLβA_{CL}=\frac{x_{o}}{x_{s}}=\frac{A_{OL}}{1+A_{OL}\cdot \beta}

For series input:

Rinf=Ri(1+AOLβ)R_{inf}=R_{i}(1+A_{OL}\cdot \beta)

For shunt input:

Rinf=Ri(1+AOLβ)R_{inf}=\frac{R_{i}}{(1+A_{OL}\cdot \beta)}
ACL=xoxs=AOL1+AOLβA_{CL}=\frac{x_{o}}{x_{s}}=\frac{A_{OL}}{1+A_{OL}\cdot \beta}

For series output:

Rof=Ro(1+AOLβ)R_{of}=R_{o}(1+A_{OL}\cdot \beta)

For shunt output:

Rof=Ro(1+AOLβ)R_{of}=\frac{R_{o}}{(1+A_{OL}\cdot \beta)}

4. The Voltage Amp (Series-Shunt Feedback)

Voltage-Voltage, Series-Shunt反馈系统如下图所示

transistor level 电路下图所示

open-loop gain:

β=vfv2=R1R1+R2\beta=\frac{v_{f}}{v_{2}}=\frac{R_{1}}{R_{1}+R_{2}}

因为是series-shunt

因为是用MOS device, 输入Ri=infinity

Ro=RL(R1+R2)R_{o}=R_{L}\parallel (R_{1}+R_{2})
ACL=AOL1+AOLβA_{CL}=\frac{A_{OL}}{1+A_{OL}\cdot \beta}
Rinf=Ri(1+AOLβ)R_{inf}=R_{i}(1+A_{OL}\cdot \beta)
Rof=Ro(1+AOLβ)R_{of}=\frac{R_{o}}{(1+A_{OL}\cdot \beta)}

考虑RG1,RG2和 Rs的影响, 实际Gain和Input Resistance:

考虑下图series-shunt circuit

Open-loop gain和beta:

5. The Transimpedance Amp (Shunt-Shunt Feedback)

shunt-shunt 并联-并联, 电流-电压反馈, 采样输出的Voltage, 在输入端加入反馈电流

ACL=AOL1+AOLβA_{CL}=\frac{A_{OL}}{1+A_{OL}\cdot \beta}
Rinf=Ri(1+AOLβ)R_{inf}=\frac{R_{i}}{(1+A_{OL}\cdot \beta)}
Rof=Ro(1+AOLβ)R_{of}=\frac{R_{o}}{(1+A_{OL}\cdot \beta)}

下图是shunt-shunt 电路

Open-loop gain: Aol=v2/is

β=ifv2=1R2mhos\beta=\frac{i_{f}}{v_{2}}=-\frac{1}{R_{2}}\text{mhos}

Voltage Gain, v2/v1:

v2v1=v2is(Rinf)=ACL1Rinf\frac{v_{2}}{v_{1}}=\frac{v_{2}}{i_{s}(R_{inf})}=A_{CL}\frac{1}{R_{inf}}

Simple Feedback Using a Gate-Drain Resistor

一个常见的shunt-shunt feedback电路下图所示, 通过很大resistor R2把Gain和Drain连到一起.

分析DC, 因为R2很大, Gate Voltage=Drain Voltage, 没有电流流过R2. 因此确保Device无需其他器件就处于saturation (我真的很好奇 whether it really works).

小信号模型:

AOL=[gm1(R1R2ro1)][R2] V/AA_{OL}=[-g_{m1}(R_{1}\parallel R_{2}\parallel r_{o1})][R_{2}] \text{ V/A}
Ri=R2R_{i}=R_{2}
Ro=R1R2ro1R_{o}=R_{1}\parallel R_{2}\parallel r_{o1}
β=1R2\beta=-\frac{1}{R_{2}}

Closed-loop gain:

ACL=v2is=gm1RoR21+gm1RoR21R2A_{CL}=\frac{v_{2}}{i_{s}}=\frac{-g_{m1}R_{o}R_{2}}{1+g_{m1}R_{o}R_{2}\frac{1}{R_{2}}}

Input, Output Resistance:

Rinf=v1is=R21+gm1RoR21R2R_{inf}=\frac{v_{1}}{i_{s}}=\frac{R_{2}}{1+g_{m1}R_{o}R_{2}\frac{1}{R_{2}}}
Rof=Ro1+gm1RoR21R2R_{of}=\frac{R_{o}}{1+g_{m1}R_{o}R_{2}\frac{1}{R_{2}}}

输出输入Voltage Gain:

v2v1=v2isisv1=ACL1Rinf=gm1Ro=gm1(R1R2ro1)\frac{v_{2}}{v_{1}}=\frac{v_{2}}{i_{s}}\cdot \frac{i_{s}}{v_{1}}=A_{CL}\cdot \frac{1}{R_{inf}}=-g_{m1}R_{o}=-g_{m1}(R_{1}\parallel R_{2}\parallel r_{o1})

6. The Transconductance Amp (Series-Series Feedback)

Series-Series 串联-串联反馈, 采样输出的电流 反馈到输入的电压.

ACL=iovi=AOL1+AOLβA_{CL}=\frac{i_{o}}{v_{i}}=\frac{A_{OL}}{1+A_{OL}\cdot \beta}
Rinf=Ri(1+AOLβ)R_{inf}=R_{i}(1+A_{OL}\cdot \beta)
Rof=Ro(1+AOLβ)R_{of}=R_{o}(1+A_{OL}\cdot \beta)

transistor level circuit如下所示

Open-loop小信号模型:

Rout:

7. The Current Amplifier (Shunt-Series Feedback)

Shunt-Series 电流-电流负反馈如下图所示,

输入输出阻抗:

transistor电路如下:

Rout和Rin

β=ifio=gm2ro3 A/A\beta=\frac{i_{f}}{i_{o}}=-g_{m2}r_{o3} \text{ A/A}

8. Stability

Loop gain

T=AOLβT=A_{OL}\beta

为了环路稳定性, phase margin至少45 deg, 60 deg更好

phase:

loop gain:

对于pole极点p1: gain在p1处开始以20dB/十倍频 的速度下降. phase在p1/10处开始下降, 降到p1处为-45°, 在10*p1处降到-90°, 结束.

对于zero极点z1: gain在z1处开始以20dB/十倍频 的速度上升. phase在z1/10处开始上升, 升到p1处为-45°, 在10*p1处升到+90°, 结束.

The Return Ratio

Return ratio就是断环, 找loop gain. 断环点一般找MOSFET的gain, 或者impedance高处.

9. Design Examples

9.1 Voltage Amplifiers (series-shunt)

上图展示了series-shunt 即voltage in-out的电路结构.

其中b)为unity gain buffer, 输入阻抗极大, 输出阻抗小, 适合做buffer.

输入电压范围: Vin_min=Vgs+Vdsat, Vin_max=VDD-Vdsat+Vthn.

输出电压范围: Vout swing form Vdd-Vdsat to Vdsat.

比起其他常规unity gain buffer, 这种结构bandwidth更宽.

由于M1的body effect, gain可能不为1, 解决方法就是把M1 local-tie即Source和Body接到一起. 如果工艺不允许这样做, 我们可以用PMOS作为输入管,即下图

Amplifiers with Gain

对于不是unity-gain的应用, 31.48 a) 加入R2,R1 series-shunt有gain. M1的电流为MR3, M2的电流取决与R1和R2的值, 这不好.

31.48 b) 加入source follower解决这个问题, M2 电流为 MRL, 很好控制. MSF可以sink 来自MSL和R1-R2的 current, 因为MSF的gate是free的, 这也是为什么要用PMOS做source follower,而不是NMOS.

Vout的bode plot有一个翘起来的角, 这是因为added source follower. The impedance looking into the output of the source follower (the source of MSF) becomes inductive when it's driven with a resistive load. 从source-follower的source端看进去会有电感性, 当source接电阻.

9.2 A Transimpedance Amplifier

transimpedance (shunt-shunt) 电压-电流 放大器

Closed-loop gain:

ACL=1β=1jωCF=voutidA_{CL}=\frac{1}{\beta}=\frac{-1}{j\omega C_{F}}=\frac{v_{out}}{-i_{d}}