基于Android Q分析
开启预览的流程:
openCamera -- onOpened -->
CameraCaptureSession/CameraCaptureRequest -- onConfigured -->
setRepeatingRequest
request的整体处理流程:
1 CameraDeviceImpl.setRepeatingRequest()
setRepeatingRequest方法的实现是由CameraCaptureSessionImpl来完成;
public int setRepeatingRequest(CaptureRequest request, CaptureCallback callback,
Executor executor) throws CameraAccessException {
List<CaptureRequest> requestList = new ArrayList<CaptureRequest>();
requestList.add(request);
return submitCaptureRequest(requestList, callback, executor, /*streaming*/true);
}
第一个参数CaptureRequest只有一个Request,然后将request包装成List,那么很明显,List的元素个数就只有一个,然后传入到submitCaptureRequest()方法中,
private int submitCaptureRequest(List<CaptureRequest> requestList, CaptureCallback callback,
Executor executor, boolean repeating) throws CameraAccessException {
// Need a valid executor, or current thread needs to have a looper, if
// callback is valid
executor = checkExecutor(executor, callback);
synchronized(mInterfaceLock) {
checkIfCameraClosedOrInError();
// Make sure that there all requests have at least 1 surface; all surfaces are non-null;
// 对addTarget()方法传入的Surface list进行检查
for (CaptureRequest request : requestList) {
if (request.getTargets().isEmpty()) {
throw new IllegalArgumentException(
"Each request must have at least one Surface target");
}
for (Surface surface : request.getTargets()) {
// 需要确保所有的surface都是非空
if (surface == null) {
throw new IllegalArgumentException("Null Surface targets are not allowed");
}
}
}
if (repeating) {
stopRepeating();
}
// 用于接收request submit之后的信息
SubmitInfo requestInfo;
CaptureRequest[] requestArray = requestList.toArray(new CaptureRequest[requestList.size()]);
// Convert Surface to streamIdx and surfaceIdx
for (CaptureRequest request : requestArray) {
request.convertSurfaceToStreamId(mConfiguredOutputs);
}
requestInfo = mRemoteDevice.submitRequestList(requestArray, repeating);
if (DEBUG) {
Log.v(TAG, "last frame number " + requestInfo.getLastFrameNumber());
}
for (CaptureRequest request : requestArray) {
// 与convertSurfaceToStreamId()方法成对出现
request.recoverStreamIdToSurface();
}
// 一般在setRepeatingRequest时,callback为null
if (callback != null) {
mCaptureCallbackMap.put(requestInfo.getRequestId(),
new CaptureCallbackHolder(
callback, requestList, executor, repeating, mNextSessionId - 1));
} else {
if (DEBUG) {
Log.d(TAG, "Listen for request " + requestInfo.getRequestId() + " is null");
}
}
// repeating表示是否重复,也就是预览,repeating 为入参属性,默认值为true
// repeating决定当前request插入到哪个队列当中
if (repeating) {
if (mRepeatingRequestId != REQUEST_ID_NONE) {
checkEarlyTriggerSequenceCompleteLocked(mRepeatingRequestId,
requestInfo.getLastFrameNumber(),
mRepeatingRequestTypes);
}
mRepeatingRequestId = requestInfo.getRequestId();
// 获取request数组的Type属性数组,一般只有一个request,所以对应只有一个type值的数组
mRepeatingRequestTypes = getRequestTypes(requestArray);
} else {
mRequestLastFrameNumbersList.add(
new RequestLastFrameNumbersHolder(requestList, requestInfo));
}
if (mIdle) {
mDeviceExecutor.execute(mCallOnActive);
}
mIdle = false;
return requestInfo.getRequestId();
}
}
该方法先对handler、Surface参数进行检查,如果检查出错,就直接抛出异常,request.getTargets()得到的就是我们在APP层放进去的Surface对象了;参数检查完成后,又将它转换成数组,然后调用mRemoteDevice.submitRequestList(requestArray, repeating)提交到CameraServer进程当中。第二个参数repeating表示是否重复,也就是预览的意思,该参数的两种取值为true就表示是预览请求,需要重复;为false表示是拍照,只有一帧,不需要重复,该参数往下传递,会在CameraServer中决定当前Request插入到哪个队列当中;
2 CameraDeivceClient.submitRequestList()
binder::Status CameraDeviceClient::submitRequestList(
const std::vector<hardware::camera2::CaptureRequest>& requests,
bool streaming,
/*out*/
hardware::camera2::utils::SubmitInfo *submitInfo) {
ATRACE_CALL();
ALOGV("%s-start of function. Request list size %zu", __FUNCTION__, requests.size());
binder::Status res = binder::Status::ok();
status_t err;
if ( !(res = checkPidStatus(__FUNCTION__) ).isOk()) {
return res;
}
Mutex::Autolock icl(mBinderSerializationLock);
if (!mDevice.get()) {
return STATUS_ERROR(CameraService::ERROR_DISCONNECTED, "Camera device no longer alive");
}
if (requests.empty()) {
ALOGE("%s: Camera %s: Sent null request. Rejecting request.",
__FUNCTION__, mCameraIdStr.string());
return STATUS_ERROR(CameraService::ERROR_ILLEGAL_ARGUMENT, "Empty request list");
}
List<const CameraDeviceBase::PhysicalCameraSettingsList> metadataRequestList;
std::list<const SurfaceMap> surfaceMapList;
submitInfo->mRequestId = mRequestIdCounter;
uint32_t loopCounter = 0;
for (auto&& request: requests) {
if (request.mIsReprocess) {
if (!mInputStream.configured) {
ALOGE("%s: Camera %s: no input stream is configured.", __FUNCTION__,
mCameraIdStr.string());
return STATUS_ERROR_FMT(CameraService::ERROR_ILLEGAL_ARGUMENT,
"No input configured for camera %s but request is for reprocessing",
mCameraIdStr.string());
} else if (streaming) {
ALOGE("%s: Camera %s: streaming reprocess requests not supported.", __FUNCTION__,
mCameraIdStr.string());
return STATUS_ERROR(CameraService::ERROR_ILLEGAL_ARGUMENT,
"Repeating reprocess requests not supported");
} else if (request.mPhysicalCameraSettings.size() > 1) {
ALOGE("%s: Camera %s: reprocess requests not supported for "
"multiple physical cameras.", __FUNCTION__,
mCameraIdStr.string());
return STATUS_ERROR(CameraService::ERROR_ILLEGAL_ARGUMENT,
"Reprocess requests not supported for multiple cameras");
}
}
if (request.mPhysicalCameraSettings.empty()) {
ALOGE("%s: Camera %s: request doesn't contain any settings.", __FUNCTION__,
mCameraIdStr.string());
return STATUS_ERROR(CameraService::ERROR_ILLEGAL_ARGUMENT,
"Request doesn't contain any settings");
}
//The first capture settings should always match the logical camera id
String8 logicalId(request.mPhysicalCameraSettings.begin()->id.c_str());
if (mDevice->getId() != logicalId) {
ALOGE("%s: Camera %s: Invalid camera request settings.", __FUNCTION__,
mCameraIdStr.string());
return STATUS_ERROR(CameraService::ERROR_ILLEGAL_ARGUMENT,
"Invalid camera request settings");
}
if (request.mSurfaceList.isEmpty() && request.mStreamIdxList.size() == 0) {
ALOGE("%s: Camera %s: Requests must have at least one surface target. "
"Rejecting request.", __FUNCTION__, mCameraIdStr.string());
return STATUS_ERROR(CameraService::ERROR_ILLEGAL_ARGUMENT,
"Request has no output targets");
}
/**
* Write in the output stream IDs and map from stream ID to surface ID
* which we calculate from the capture request's list of surface target
*/
SurfaceMap surfaceMap;
Vector<int32_t> outputStreamIds;
std::vector<std::string> requestedPhysicalIds;
if (request.mSurfaceList.size() > 0) {
for (const sp<Surface>& surface : request.mSurfaceList) {
if (surface == 0) continue;
int32_t streamId;
sp<IGraphicBufferProducer> gbp = surface->getIGraphicBufferProducer();
res = insertGbpLocked(gbp, &surfaceMap, &outputStreamIds, &streamId);
if (!res.isOk()) {
return res;
}
ssize_t index = mConfiguredOutputs.indexOfKey(streamId);
if (index >= 0) {
String8 requestedPhysicalId(
mConfiguredOutputs.valueAt(index).getPhysicalCameraId());
requestedPhysicalIds.push_back(requestedPhysicalId.string());
} else {
ALOGW("%s: Output stream Id not found among configured outputs!", __FUNCTION__);
}
}
} else {
for (size_t i = 0; i < request.mStreamIdxList.size(); i++) {
int streamId = request.mStreamIdxList.itemAt(i);
int surfaceIdx = request.mSurfaceIdxList.itemAt(i);
ssize_t index = mConfiguredOutputs.indexOfKey(streamId);
if (index < 0) {
ALOGE("%s: Camera %s: Tried to submit a request with a surface that"
" we have not called createStream on: stream %d",
__FUNCTION__, mCameraIdStr.string(), streamId);
return STATUS_ERROR(CameraService::ERROR_ILLEGAL_ARGUMENT,
"Request targets Surface that is not part of current capture session");
}
const auto& gbps = mConfiguredOutputs.valueAt(index).getGraphicBufferProducers();
if ((size_t)surfaceIdx >= gbps.size()) {
ALOGE("%s: Camera %s: Tried to submit a request with a surface that"
" we have not called createStream on: stream %d, surfaceIdx %d",
__FUNCTION__, mCameraIdStr.string(), streamId, surfaceIdx);
return STATUS_ERROR(CameraService::ERROR_ILLEGAL_ARGUMENT,
"Request targets Surface has invalid surface index");
}
res = insertGbpLocked(gbps[surfaceIdx], &surfaceMap, &outputStreamIds, nullptr);
if (!res.isOk()) {
return res;
}
String8 requestedPhysicalId(
mConfiguredOutputs.valueAt(index).getPhysicalCameraId());
requestedPhysicalIds.push_back(requestedPhysicalId.string());
}
}
CameraDeviceBase::PhysicalCameraSettingsList physicalSettingsList;
for (const auto& it : request.mPhysicalCameraSettings) {
if (it.settings.isEmpty()) {
ALOGE("%s: Camera %s: Sent empty metadata packet. Rejecting request.",
__FUNCTION__, mCameraIdStr.string());
return STATUS_ERROR(CameraService::ERROR_ILLEGAL_ARGUMENT,
"Request settings are empty");
}
String8 physicalId(it.id.c_str());
if (physicalId != mDevice->getId()) {
auto found = std::find(requestedPhysicalIds.begin(), requestedPhysicalIds.end(),
it.id);
if (found == requestedPhysicalIds.end()) {
ALOGE("%s: Camera %s: Physical camera id: %s not part of attached outputs.",
__FUNCTION__, mCameraIdStr.string(), physicalId.string());
return STATUS_ERROR(CameraService::ERROR_ILLEGAL_ARGUMENT,
"Invalid physical camera id");
}
if (!mSupportedPhysicalRequestKeys.empty()) {
// Filter out any unsupported physical request keys.
CameraMetadata filteredParams(mSupportedPhysicalRequestKeys.size());
camera_metadata_t *meta = const_cast<camera_metadata_t *>(
filteredParams.getAndLock());
set_camera_metadata_vendor_id(meta, mDevice->getVendorTagId());
filteredParams.unlock(meta);
for (const auto& keyIt : mSupportedPhysicalRequestKeys) {
camera_metadata_ro_entry entry = it.settings.find(keyIt);
if (entry.count > 0) {
filteredParams.update(entry);
}
}
physicalSettingsList.push_back({it.id, filteredParams});
}
} else {
physicalSettingsList.push_back({it.id, it.settings});
}
}
if (!enforceRequestPermissions(physicalSettingsList.begin()->metadata)) {
// Callee logs
return STATUS_ERROR(CameraService::ERROR_PERMISSION_DENIED,
"Caller does not have permission to change restricted controls");
}
physicalSettingsList.begin()->metadata.update(ANDROID_REQUEST_OUTPUT_STREAMS,
&outputStreamIds[0], outputStreamIds.size());
if (request.mIsReprocess) {
physicalSettingsList.begin()->metadata.update(ANDROID_REQUEST_INPUT_STREAMS,
&mInputStream.id, 1);
}
physicalSettingsList.begin()->metadata.update(ANDROID_REQUEST_ID,
&(submitInfo->mRequestId), /*size*/1);
loopCounter++; // loopCounter starts from 1
ALOGV("%s: Camera %s: Creating request with ID %d (%d of %zu)",
__FUNCTION__, mCameraIdStr.string(), submitInfo->mRequestId,
loopCounter, requests.size());
// for循环是对函数入参requests的一些检查
// 完成后填充到局部变量metadataRequestList、surfaceMapList中
metadataRequestList.push_back(physicalSettingsList);
surfaceMapList.push_back(surfaceMap);
}
mRequestIdCounter++;
// streaming 其实就是参数 repeating
if (streaming) {
err = mDevice->setStreamingRequestList(metadataRequestList, surfaceMapList,
&(submitInfo->mLastFrameNumber));
if (err != OK) {
String8 msg = String8::format(
"Camera %s: Got error %s (%d) after trying to set streaming request",
mCameraIdStr.string(), strerror(-err), err);
ALOGE("%s: %s", __FUNCTION__, msg.string());
res = STATUS_ERROR(CameraService::ERROR_INVALID_OPERATION,
msg.string());
} else {
Mutex::Autolock idLock(mStreamingRequestIdLock);
mStreamingRequestId = submitInfo->mRequestId;
}
} else {
err = mDevice->captureList(metadataRequestList, surfaceMapList,
&(submitInfo->mLastFrameNumber));
if (err != OK) {
String8 msg = String8::format(
"Camera %s: Got error %s (%d) after trying to submit capture request",
mCameraIdStr.string(), strerror(-err), err);
ALOGE("%s: %s", __FUNCTION__, msg.string());
res = STATUS_ERROR(CameraService::ERROR_INVALID_OPERATION,
msg.string());
}
ALOGV("%s: requestId = %d ", __FUNCTION__, submitInfo->mRequestId);
}
ALOGV("%s: Camera %s: End of function", __FUNCTION__, mCameraIdStr.string());
return res;
}
进来还是先进行参数检查,mDevice成员变量是在构造参数时赋值好的,是在父类Camera2ClientBase对象的构造函数中new出来的;要提交request,那么参数requests肯定不能为空了。接下来的for循环是对函数入参requests的一些检查,完成后填充到局部变量metadataRequestList、surfaceMapList中,作为参数继续调用mDevice的方法进一步处理,进一步处理的分类判断条件非常明确,就是我们在Framework中传入的参数repeating,如果是预览,就调用mDevice->setStreamingRequestList(metadataRequestList, surfaceMapList, &(submitInfo->mLastFrameNumber)),如果是拍照就调用mDevice->captureList(metadataRequestList, surfaceMapList, &(submitInfo->mLastFrameNumber));
接下来就是重点,我们在上层只调用了一次setRepeatingRequest,而且只有一个Request,但是预览帧数据却源源不断的输出上来,我们就从这里往下分析一下Request循环的原理;
3 setStreamingRequestList()
status_t Camera3Device::setStreamingRequestList(
const List<const PhysicalCameraSettingsList> &requestsList,
const std::list<const SurfaceMap> &surfaceMaps, int64_t *lastFrameNumber) {
ATRACE_CALL();
return submitRequestsHelper(requestsList, surfaceMaps, /*repeating*/true, lastFrameNumber);
}
很简单,都是直接调用submitRequestsHelper方法来进一步处理的,submitRequestsHelper方法的源码如下:
status_t Camera3Device::submitRequestsHelper(
const List<const PhysicalCameraSettingsList> &requests,
const std::list<const SurfaceMap> &surfaceMaps,
bool repeating,
/*out*/
int64_t *lastFrameNumber) {
ATRACE_CALL();
Mutex::Autolock il(mInterfaceLock);
Mutex::Autolock l(mLock);
status_t res = checkStatusOkToCaptureLocked();
if (res != OK) {
// error logged by previous call
return res;
}
// 自定义的一个Request链表结构
RequestList requestList;
// 进行Metadata转换
res = convertMetadataListToRequestListLocked(requests, surfaceMaps,
repeating, /*out*/&requestList);
if (res != OK) {
// error logged by previous call
return res;
}
if (repeating) {
res = mRequestThread->setRepeatingRequests(requestList, lastFrameNumber);
} else {
res = mRequestThread->queueRequestList(requestList, lastFrameNumber);
}
if (res == OK) {
// 等待直到mStatus为active为止
waitUntilStateThenRelock(/*active*/true, kActiveTimeout);
if (res != OK) {
SET_ERR_L("Can't transition to active in %f seconds!",
kActiveTimeout/1e9);
}
ALOGV("Camera %s: Capture request %" PRId32 " enqueued", mId.string(),
(*(requestList.begin()))->mResultExtras.requestId);
} else {
CLOGE("Cannot queue request. Impossible.");
return BAD_VALUE;
}
return res;
}
3.1 RequestThread::queueRequestList()
我们首先看拍照时的queueRequestList方法:
status_t Camera3Device::RequestThread::queueRequestList(
List<sp<CaptureRequest> > &requests,
/*out*/
int64_t *lastFrameNumber) {
ATRACE_CALL();
Mutex::Autolock l(mRequestLock);
// for循环中就是将入参requests放入到成员变量mRequestQueue当中
// mRequestQueue是存储拍照Request的
for (List<sp<CaptureRequest> >::iterator it = requests.begin(); it != requests.end();
++it) {
mRequestQueue.push_back(*it);
}
// 第一次进入,lastFrameNumber为null
if (lastFrameNumber != NULL) {
// 给输出参数lastFrameNumber赋值,mFrameNumber就是当前的帧号,它是从0开始递增的一个整数
*lastFrameNumber = mFrameNumber + mRequestQueue.size() - 1;
ALOGV("%s: requestId %d, mFrameNumber %" PRId32 ", lastFrameNumber %" PRId64 ".",
__FUNCTION__, (*(requests.begin()))->mResultExtras.requestId, mFrameNumber,
*lastFrameNumber);
}
unpauseForNewRequests();
return OK;
}
该方法中的逻辑非常清晰,for循环中就是将入参requests放入到成员变量mRequestQueue当中,所以这里大家一定要注意,mRequestQueue是存储拍照Request的,然后给输出参数lastFrameNumber赋值,mFrameNumber就是当前的帧号,它是从0开始递增的一个整数,它的递增也是在有效的预览循环开始后开始递增的;
3.2 RequestThread::setRepeatingRequests()
接着看setRepeatingRequests方法,源码如下:
status_t Camera3Device::RequestThread::setRepeatingRequests(
const RequestList &requests,
/*out*/
int64_t *lastFrameNumber) {
ATRACE_CALL();
Mutex::Autolock l(mRequestLock);
if (lastFrameNumber != NULL) {
*lastFrameNumber = mRepeatingLastFrameNumber;
}
mRepeatingRequests.clear();
mRepeatingRequests.insert(mRepeatingRequests.begin(),
requests.begin(), requests.end());
unpauseForNewRequests();
mRepeatingLastFrameNumber = hardware::camera2::ICameraDeviceUser::NO_IN_FLIGHT_REPEATING_FRAMES;
return OK;
}
这里是把mRepeatingLastFrameNumber赋值给输出参数lastFrameNumber,然后将mRepeatingRequests清空,再将入参requests放入到mRepeatingRequests当中,从这里和queueRequestList方法的实现对比,就可以看出来,mRepeatingRequests是用来存储预览Request的,这就是两个成员变量不同的作用了;
这里有些奇怪,为什么只是将requests插入到队列中就完了呢?我们来看一下RequestThread就明白了;
4 RequestThread
RequestThread就是我们本节最重点的对象了,它是一条线程,是在Camera3Device构造成功,调用initializeCommonLocked进行初始化时构造的,initializeCommonLocked方法的源码如下:
status_t Camera3Device::initializeCommonLocked() {
/** Start up status tracker thread */
mStatusTracker = new StatusTracker(this);
status_t res = mStatusTracker->run(String8::format("C3Dev-%s-Status", mId.string()).string());
if (res != OK) {
SET_ERR_L("Unable to start status tracking thread: %s (%d)",
strerror(-res), res);
mInterface->close();
mStatusTracker.clear();
return res;
}
/** Register in-flight map to the status tracker */
mInFlightStatusId = mStatusTracker->addComponent();
if (mUseHalBufManager) {
res = mRequestBufferSM.initialize(mStatusTracker);
if (res != OK) {
SET_ERR_L("Unable to start request buffer state machine: %s (%d)",
strerror(-res), res);
mInterface->close();
mStatusTracker.clear();
return res;
}
}
/** Create buffer manager */
mBufferManager = new Camera3BufferManager();
Vector<int32_t> sessionParamKeys;
camera_metadata_entry_t sessionKeysEntry = mDeviceInfo.find(
ANDROID_REQUEST_AVAILABLE_SESSION_KEYS);
if (sessionKeysEntry.count > 0) {
sessionParamKeys.insertArrayAt(sessionKeysEntry.data.i32, 0, sessionKeysEntry.count);
}
/** Start up request queue thread */
mRequestThread = new RequestThread(
this, mStatusTracker, mInterface, sessionParamKeys, mUseHalBufManager);
// 传入的参数就是当前线程的名字
// 可以使用ps -T 【pid】来查看当前进程的所有线程
// 有一条以“ReqQueue”名字结尾的线程,也就是RequestThread,RequestThread是预览循环的主体
res = mRequestThread->run(String8::format("C3Dev-%s-ReqQueue", mId.string()).string());
if (res != OK) {
SET_ERR_L("Unable to start request queue thread: %s (%d)",
strerror(-res), res);
mInterface->close();
mRequestThread.clear();
return res;
}
mPreparerThread = new PreparerThread();
internalUpdateStatusLocked(STATUS_UNCONFIGURED);
mNextStreamId = 0;
mDummyStreamId = NO_STREAM;
mNeedConfig = true;
mPauseStateNotify = false;
// Measure the clock domain offset between camera and video/hw_composer
camera_metadata_entry timestampSource =
mDeviceInfo.find(ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE);
if (timestampSource.count > 0 && timestampSource.data.u8[0] ==
ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE_REALTIME) {
mTimestampOffset = getMonoToBoottimeOffset();
}
// Will the HAL be sending in early partial result metadata?
camera_metadata_entry partialResultsCount =
mDeviceInfo.find(ANDROID_REQUEST_PARTIAL_RESULT_COUNT);
if (partialResultsCount.count > 0) {
mNumPartialResults = partialResultsCount.data.i32[0];
mUsePartialResult = (mNumPartialResults > 1);
}
camera_metadata_entry configs =
mDeviceInfo.find(ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS);
for (uint32_t i = 0; i < configs.count; i += 4) {
if (configs.data.i32[i] == HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED &&
configs.data.i32[i + 3] ==
ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_INPUT) {
mSupportedOpaqueInputSizes.add(Size(configs.data.i32[i + 1],
configs.data.i32[i + 2]));
}
}
bool usePrecorrectArray = DistortionMapper::isDistortionSupported(mDeviceInfo);
if (usePrecorrectArray) {
res = mDistortionMappers[mId.c_str()].setupStaticInfo(mDeviceInfo);
if (res != OK) {
SET_ERR_L("Unable to read necessary calibration fields for distortion correction");
return res;
}
}
mZoomRatioMappers[mId.c_str()] = ZoomRatioMapper(&mDeviceInfo,
mSupportNativeZoomRatio, usePrecorrectArray);
if (RotateAndCropMapper::isNeeded(&mDeviceInfo)) {
mRotateAndCropMappers.emplace(mId.c_str(), &mDeviceInfo);
}
return OK;
}
调用mRequestThread->run(String8::format("C3Dev-%s-ReqQueue", mId.string()).string())方法时,传入的参数就是当前线程的名字,所以我们也可以使用ps -T 【pid】来查看当前进程的所有线程,就可以看到有一条以“ReqQueue”名字结尾的线程,也就是RequestThread了,而且它是在Camera3Device初始化时就启动的了,它也是我们预览循环的主体。
RequestThread是继承Android的Thread类的,主函数就是threadLoop,我们来看一下RequestThread的threadLoop函数的实现,源码如下:
bool Camera3Device::RequestThread::threadLoop() {
ATRACE_CALL();
status_t res;
// Any function called from threadLoop() must not hold mInterfaceLock since
// it could lead to deadlocks (disconnect() -> hold mInterfaceMutex -> wait for request thread
// to finish -> request thread waits on mInterfaceMutex) http://b/143513518
// Handle paused state.
// pause状态下直接返回
if (waitIfPaused()) {
return true;
}
// Wait for the next batch of requests.
// 准备下一次的Request请求
waitForNextRequestBatch();
if (mNextRequests.size() == 0) {
return true;
}
// Get the latest request ID, if any
int latestRequestId;
camera_metadata_entry_t requestIdEntry = mNextRequests[mNextRequests.size() - 1].
captureRequest->mSettingsList.begin()->metadata.find(ANDROID_REQUEST_ID);
if (requestIdEntry.count > 0) {
latestRequestId = requestIdEntry.data.i32[0];
} else {
ALOGW("%s: Did not have android.request.id set in the request.", __FUNCTION__);
latestRequestId = NAME_NOT_FOUND;
}
// 'mNextRequests' will at this point contain either a set of HFR batched requests
// or a single request from streaming or burst. In either case the first element
// should contain the latest camera settings that we need to check for any session
// parameter updates.
if (updateSessionParameters(mNextRequests[0].captureRequest->mSettingsList.begin()->metadata)) {
res = OK;
//Input stream buffers are already acquired at this point so an input stream
//will not be able to move to idle state unless we force it.
if (mNextRequests[0].captureRequest->mInputStream != nullptr) {
res = mNextRequests[0].captureRequest->mInputStream->forceToIdle();
if (res != OK) {
ALOGE("%s: Failed to force idle input stream: %d", __FUNCTION__, res);
cleanUpFailedRequests(/*sendRequestError*/ false);
return false;
}
}
if (res == OK) {
sp<Camera3Device> parent = mParent.promote();
if (parent != nullptr) {
mReconfigured |= parent->reconfigureCamera(mLatestSessionParams, mStatusId);
}
setPaused(false);
if (mNextRequests[0].captureRequest->mInputStream != nullptr) {
mNextRequests[0].captureRequest->mInputStream->restoreConfiguredState();
if (res != OK) {
ALOGE("%s: Failed to restore configured input stream: %d", __FUNCTION__, res);
cleanUpFailedRequests(/*sendRequestError*/ false);
return false;
}
}
}
}
// Prepare a batch of HAL requests and output buffers.
// 为上一步准备好的Request请求的hal_request赋值,继续完善这个Request
res = prepareHalRequests();
if (res == TIMED_OUT) {
// Not a fatal error if getting output buffers time out.
cleanUpFailedRequests(/*sendRequestError*/ true);
// Check if any stream is abandoned.
checkAndStopRepeatingRequest();
return true;
} else if (res != OK) {
cleanUpFailedRequests(/*sendRequestError*/ false);
return false;
}
// Inform waitUntilRequestProcessed thread of a new request ID
{
Mutex::Autolock al(mLatestRequestMutex);
mLatestRequestId = latestRequestId;
mLatestRequestSignal.signal();
}
// Submit a batch of requests to HAL.
// Use flush lock only when submitting multilple requests in a batch.
// TODO: The problem with flush lock is flush() will be blocked by process_capture_request()
// which may take a long time to finish so synchronizing flush() and
// process_capture_request() defeats the purpose of cancelling requests ASAP with flush().
// For now, only synchronize for high speed recording and we should figure something out for
// removing the synchronization.
bool useFlushLock = mNextRequests.size() > 1;
if (useFlushLock) {
mFlushLock.lock();
}
ALOGVV("%s: %d: submitting %zu requests in a batch.", __FUNCTION__, __LINE__,
mNextRequests.size());
sp<Camera3Device> parent = mParent.promote();
if (parent != nullptr) {
parent->mRequestBufferSM.onSubmittingRequest();
}
bool submitRequestSuccess = false;
nsecs_t tRequestStart = systemTime(SYSTEM_TIME_MONOTONIC);
/* Android O 处理逻辑,和Android Q 处理逻辑有一定的区别,需要注意
if (mInterface->supportBatchRequest()) {
submitRequestSuccess = sendRequestsBatch();
} else {
submitRequestSuccess = sendRequestsOneByOne();
}
*/
submitRequestSuccess = sendRequestsBatch();
nsecs_t tRequestEnd = systemTime(SYSTEM_TIME_MONOTONIC);
mRequestLatency.add(tRequestStart, tRequestEnd);
if (useFlushLock) {
mFlushLock.unlock();
}
// Unset as current request
{
Mutex::Autolock l(mRequestLock);
// 每一帧处理完成后,会将mNextRequests清空
mNextRequests.clear();
}
mRequestSubmittedSignal.signal();
return submitRequestSuccess;
}
waitIfPaused方法表示如果是pause状态的话,就什么不作,直接返回true,刚好该返回值就决定了线程是否要继续循环;所以如果是pause状态的话,就继续进行线程循环。
刚开始初始化完成,预览还未下发的时候,这里就会一直空处理,啥逻辑也没有,直接返回,那不是白白浪费CPU时间片吗?不急,我们耐心看一下waitIfPaused方法的实现就明白了,Google的精英们是绝不会犯这样低级的错误的,waitIfPaused方法的源码如下:
bool Camera3Device::RequestThread::waitIfPaused() {
ATRACE_CALL();
status_t res;
Mutex::Autolock l(mPauseLock);
// 好像初始化为true,需要确认一下
while (mDoPause) {
if (mPaused == false) {
mPaused = true;
ALOGV("%s: RequestThread: Paused", __FUNCTION__);
if (mNotifyPipelineDrain) {
mInterface->signalPipelineDrain(mStreamIdsToBeDrained);
mNotifyPipelineDrain = false;
mStreamIdsToBeDrained.clear();
}
// Let the tracker know
sp<StatusTracker> statusTracker = mStatusTracker.promote();
if (statusTracker != 0) {
statusTracker->markComponentIdle(mStatusId, Fence::NO_FENCE);
}
sp<Camera3Device> parent = mParent.promote();
if (parent != nullptr) {
parent->mRequestBufferSM.onRequestThreadPaused();
}
}
res = mDoPauseSignal.waitRelative(mPauseLock, kRequestTimeout);
if (res == TIMED_OUT || exitPending()) {
return true;
}
}
// We don't set mPaused to false here, because waitForNextRequest needs
// to further manage the paused state in case of starvation.
return false;
}
如果是上面所说的情况下,就会执行mDoPauseSignal.waitRelative(mPauseLock, kRequestTimeout)等待,kRequestTimeout是定义在Camera3Device.h头文件中,定义的源码如下:
static const nsecs_t kRequestTimeout = 50e6; // 50 ms
所以这里就可以看到,如果没有Request请求时,将会等待50ms,再进行下一次判断;
继续回到threadLoop方法中,我们先不细看,根据该方法中的实现理一下大体的思路,有几个比较关键的点:
- waitForNextRequestBatch准备下一次的Request请求;
- prepareHalRequests为上一步准备好的Request请求的hal_request赋值,继续完善这个Request;
- 根据mInterface->supportBatchRequest()是否支持批处理,分别调用sendRequestsBatch、sendRequestsOneByOne将准备好的Request发送到HAL进程,也就是CameraHalServer当中去处理了,最终返回submitRequestSuccess,如果该值为true,那么继续循环,如果为false,那么肯定是中间出问题,RequestThread线程就会退出了;
理清了这个思路,我们大体也就明白了,相机整个预览循环的工作就是在这里完成的,也全部是围绕着mNextRequests成员变量来进行的。下面我们就来仔细看一下waitForNextRequestBatch、prepareHalRequests、sendRequestsBatch(我们假定支持批处理)三个函数的实现;
4.1 waitForNextRequestBatch()
void Camera3Device::RequestThread::waitForNextRequestBatch() {
ATRACE_CALL();
// Optimized a bit for the simple steady-state case (single repeating
// request), to avoid putting that request in the queue temporarily.
Mutex::Autolock l(mRequestLock);
// 断言mNextRequests中的元素为空
assert(mNextRequests.empty());
NextRequest nextRequest;
// nextRequest变量为需要添加到mNextRequests中的目标
nextRequest.captureRequest = waitForNextRequestLocked();
if (nextRequest.captureRequest == nullptr) {
return;
}
// halRequest成员变量是通过camera3_capture_request_t结构体构造的,但是它当中的所有参数都没有赋值,所以在这里它还只是个空壳子
nextRequest.halRequest = camera3_capture_request_t();
// submitted表示是否提交处理了,在这里肯定是false
// 该Request提交给HAL进程进行处理,处理了之后,它才会为true
nextRequest.submitted = false;
mNextRequests.add(nextRequest);
// Wait for additional requests
// batchSize一般都为1,通过分析日志得到的,目前暂时没有搞清楚,需要确认
const size_t batchSize = nextRequest.captureRequest->mBatchSize;
// for循环的判断条件是for (size_t i = 1; i < batchSize; i++),i 的初始值为1,而batchSize也等于1,所以for循环是不会进入的
for (size_t i = 1; i < batchSize; i++) {
NextRequest additionalRequest;
additionalRequest.captureRequest = waitForNextRequestLocked();
if (additionalRequest.captureRequest == nullptr) {
break;
}
additionalRequest.halRequest = camera3_capture_request_t();
additionalRequest.submitted = false;
mNextRequests.add(additionalRequest);
}
// 到目前为止,mNextRequests只添加了一个nextRequest,它的size就是1
if (mNextRequests.size() < batchSize) {
ALOGE("RequestThread: only get %zu out of %zu requests. Skipping requests.",
mNextRequests.size(), batchSize);
cleanUpFailedRequests(/*sendRequestError*/true);
}
return;
}
首先断言成员变量mNextRequests中的元素为空,从这个逻辑我们也可以想到,每一帧处理完成后,肯定会把它清空,它的作用非常明确,就是将下一帧需要处理的Request添加进来,每一帧处理完成后直接清空,下一帧再继续添加。然后定义一个局部变量nextRequest,它就是要添加到mNextRequests当中的目标,调用waitForNextRequestLocked方法来给它的captureRequest成员变量赋值,halRequest成员变量是通过camera3_capture_request_t结构体构造的,但是它当中的所有参数都没有赋值,所以在这里它还只是个空壳子。submitted表示是否提交处理了,在这里肯定是false了,那么它什么时候为true呢?很明确,分界线就是我们最后将该Request提交给HAL进程进行处理,处理了之后,它才会为true。batchSize一般都为1,这是我加日志明确看过的,但是它所表示的具体的意思,暂时还没搞清楚。另外,这里请大家一定要看清楚,for循环的判断条件是for (size_t i = 1; i < batchSize; i++),i 的初始值为1,而batchSize也等于1,所以for循环是不会进入的,也就是说经过这里的处理,mNextRequests只添加了一个nextRequest,它的size就是1;
// Used to prepare a batch of requests.
struct NextRequest {
sp<CaptureRequest> captureRequest;
camera3_capture_request_t halRequest;
Vector<camera3_stream_buffer_t> outputBuffers;
bool submitted;
};
NextRequest结构体,在Camera3Device.h中定义;
我们继续来看它所调用的waitForNextRequestLocked方法,源码如下:
sp<Camera3Device::CaptureRequest>
Camera3Device::RequestThread::waitForNextRequestLocked() {
status_t res;
sp<CaptureRequest> nextRequest;
// 拍照请求的优先级高于预览请求
while (mRequestQueue.empty()) {
// mRepeatingRequests不为空
if (!mRepeatingRequests.empty()) {
// Always atomically enqueue all requests in a repeating request
// list. Guarantees a complete in-sequence set of captures to
// application.
// 从预览队列中取头节点赋值给局部变量nextRequest
// mRepeatingRequests不做擦除处理,区别于mRequestQueue.erase(firstRequest)
// 这个就是thread轮训的最重要的点
const RequestList &requests = mRepeatingRequests;
RequestList::const_iterator firstRequest =
requests.begin();
nextRequest = *firstRequest;
mRequestQueue.insert(mRequestQueue.end(),
++firstRequest,
requests.end());
// No need to wait any longer
// 给mRepeatingLastFrameNumber预览帧变量赋值
mRepeatingLastFrameNumber = mFrameNumber + requests.size() - 1;
break;
}
res = mRequestSignal.waitRelative(mRequestLock, kRequestTimeout);
if ((mRequestQueue.empty() && mRepeatingRequests.empty()) ||
exitPending()) {
Mutex::Autolock pl(mPauseLock);
if (mPaused == false) {
ALOGV("%s: RequestThread: Going idle", __FUNCTION__);
mPaused = true;
if (mNotifyPipelineDrain) {
mInterface->signalPipelineDrain(mStreamIdsToBeDrained);
mNotifyPipelineDrain = false;
mStreamIdsToBeDrained.clear();
}
// Let the tracker know
sp<StatusTracker> statusTracker = mStatusTracker.promote();
if (statusTracker != 0) {
statusTracker->markComponentIdle(mStatusId, Fence::NO_FENCE);
}
sp<Camera3Device> parent = mParent.promote();
if (parent != nullptr) {
parent->mRequestBufferSM.onRequestThreadPaused();
}
}
// Stop waiting for now and let thread management happen
return NULL;
}
}
// mRequestQueue不为空,跳过while,直接从mRequestQueue获取request
if (nextRequest == NULL) {
// Don't have a repeating request already in hand, so queue
// must have an entry now.
RequestList::iterator firstRequest =
mRequestQueue.begin();
nextRequest = *firstRequest;
mRequestQueue.erase(firstRequest);
if (mRequestQueue.empty() && !nextRequest->mRepeating) {
sp<NotificationListener> listener = mListener.promote();
if (listener != NULL) {
listener->notifyRequestQueueEmpty();
}
}
}
// In case we've been unpaused by setPaused clearing mDoPause, need to
// update internal pause state (capture/setRepeatingRequest unpause
// directly).
Mutex::Autolock pl(mPauseLock);
if (mPaused) {
ALOGV("%s: RequestThread: Unpaused", __FUNCTION__);
sp<StatusTracker> statusTracker = mStatusTracker.promote();
if (statusTracker != 0) {
statusTracker->markComponentActive(mStatusId);
}
}
mPaused = false;
// Check if we've reconfigured since last time, and reset the preview
// request if so. Can't use 'NULL request == repeat' across configure calls.
if (mReconfigured) {
mPrevRequest.clear();
mReconfigured = false;
}
// 这一块的逻辑,有可能是从mRequestQueue获取的request,也有可能是从mRepeatingRequests获取的
if (nextRequest != NULL) {
nextRequest->mResultExtras.frameNumber = mFrameNumber++;
nextRequest->mResultExtras.afTriggerId = mCurrentAfTriggerId;
nextRequest->mResultExtras.precaptureTriggerId = mCurrentPreCaptureTriggerId;
// Since RequestThread::clear() removes buffers from the input stream,
// get the right buffer here before unlocking mRequestLock
if (nextRequest->mInputStream != NULL) {
res = nextRequest->mInputStream->getInputBuffer(&nextRequest->mInputBuffer);
if (res != OK) {
// Can't get input buffer from gralloc queue - this could be due to
// disconnected queue or other producer misbehavior, so not a fatal
// error
ALOGE("%s: Can't get input buffer, skipping request:"
" %s (%d)", __FUNCTION__, strerror(-res), res);
sp<NotificationListener> listener = mListener.promote();
if (listener != NULL) {
listener->notifyError(
hardware::camera2::ICameraDeviceCallbacks::ERROR_CAMERA_REQUEST,
nextRequest->mResultExtras);
}
return NULL;
}
}
}
return nextRequest;
}
方法一开始的while循环可以很直接的看到,先从mRequestQueue队列取数据,那么意思很明白,拍照请求的优先级肯定是高于预览请求的,比如当前RequestThread的拍照队列和预览队列都有一个Request,此时threadloop循环要取一帧进行处理,在这里的while进行判断时,拍照队列不为空,则while循环直接跳过,if (nextRequest == NULL)判断为true,就直接从拍照队列中取数据了。好,我们结合当前预览的场景来分析一下,当前拍照队列为请求为空,而if (!mRepeatingRequests.empty())判断成立,因为我们在前面是通过setRepeatingRequest调用下来的,在那里已经把当时封装好的Request插入到预览队列中了。然后从预览队列中取头节点赋值给局部变量nextRequest,接着为什么将其插入到拍照队列中?这步逻辑看来看去都没搞清楚是什么意思。最后给mRepeatingLastFrameNumber预览帧变量赋值,此时局部变量nextRequest不为空,该方法结尾处if (nextRequest != NULL)判断为true,if判断中第一句就是给帧号赋值,可以看到mFrameNumber++,先赋值后自增,这就是前面我们所说的帧号递增的出处了,这个帧号大家一定要非常重视,从CameraServer到CameraHalServer,一个帧号对应一个结果,也就是说我发一个请求给你,你就必须回复一个结果给我,我才能根据这个结果进行相应的预览或者拍照后处理,所以这个变量非常重要,它是对标两个进程之间请求的一个核心变量。剩下的还有一些其他参数的赋值,填充完成后将nextRequest返回;
那么它准备好了NextRequest,再往上回到waitForNextRequestBatch方法当中,下一帧的请求Request也就添加到成员变量mNextRequests当中了。继续往上,回到threadLoop方法当中,当时size等于1,接下来执行prepareHalRequests方法,上一行的注释写的也非常清楚了,“Prepare a batch of HAL requests and output buffers”,准备下一批的HAL请求和输出的Buffer;
4.2 prepareHalRequests()
status_t Camera3Device::RequestThread::prepareHalRequests() {
ATRACE_CALL();
bool batchedRequest = mNextRequests[0].captureRequest->mBatchSize > 1;
for (size_t i = 0; i < mNextRequests.size(); i++) {
auto& nextRequest = mNextRequests.editItemAt(i);
// 获取NextRequest结构体中的所有属性
sp<CaptureRequest> captureRequest = nextRequest.captureRequest;
camera3_capture_request_t* halRequest = &nextRequest.halRequest;
// outputBuffers是一个保存stream buffer的容器
Vector<camera3_stream_buffer_t>* outputBuffers = &nextRequest.outputBuffers;
// Prepare a request to HAL
// halRequest的构建 -- start
halRequest->frame_number = captureRequest->mResultExtras.frameNumber;
// Insert any queued triggers (before metadata is locked)
status_t res = insertTriggers(captureRequest);
if (res < 0) {
SET_ERR("RequestThread: Unable to insert triggers "
"(capture request %d, HAL device: %s (%d)",
halRequest->frame_number, strerror(-res), res);
return INVALID_OPERATION;
}
int triggerCount = res;
bool triggersMixedIn = (triggerCount > 0 || mPrevTriggers > 0);
mPrevTriggers = triggerCount;
bool rotateAndCropChanged = overrideAutoRotateAndCrop(captureRequest);
// If the request is the same as last, or we had triggers last time
bool newRequest =
(mPrevRequest != captureRequest || triggersMixedIn || rotateAndCropChanged) &&
// Request settings are all the same within one batch, so only treat the first
// request in a batch as new
!(batchedRequest && i > 0);
if (newRequest) {
std::set<std::string> cameraIdsWithZoom;
/**
* HAL workaround:
* Insert a dummy trigger ID if a trigger is set but no trigger ID is
*/
res = addDummyTriggerIds(captureRequest);
if (res != OK) {
SET_ERR("RequestThread: Unable to insert dummy trigger IDs "
"(capture request %d, HAL device: %s (%d)",
halRequest->frame_number, strerror(-res), res);
return INVALID_OPERATION;
}
{
// Correct metadata regions for distortion correction if enabled
sp<Camera3Device> parent = mParent.promote();
if (parent != nullptr) {
List<PhysicalCameraSettings>::iterator it;
for (it = captureRequest->mSettingsList.begin();
it != captureRequest->mSettingsList.end(); it++) {
if (parent->mDistortionMappers.find(it->cameraId) ==
parent->mDistortionMappers.end()) {
continue;
}
res = parent->mDistortionMappers[it->cameraId].correctCaptureRequest(
&(it->metadata));
if (res != OK) {
SET_ERR("RequestThread: Unable to correct capture requests "
"for lens distortion for request %d: %s (%d)",
halRequest->frame_number, strerror(-res), res);
return INVALID_OPERATION;
}
}
for (it = captureRequest->mSettingsList.begin();
it != captureRequest->mSettingsList.end(); it++) {
if (parent->mZoomRatioMappers.find(it->cameraId) ==
parent->mZoomRatioMappers.end()) {
continue;
}
camera_metadata_entry_t e = it->metadata.find(ANDROID_CONTROL_ZOOM_RATIO);
if (e.count > 0 && e.data.f[0] != 1.0f) {
cameraIdsWithZoom.insert(it->cameraId);
}
res = parent->mZoomRatioMappers[it->cameraId].updateCaptureRequest(
&(it->metadata));
if (res != OK) {
SET_ERR("RequestThread: Unable to correct capture requests "
"for zoom ratio for request %d: %s (%d)",
halRequest->frame_number, strerror(-res), res);
return INVALID_OPERATION;
}
}
if (captureRequest->mRotateAndCropAuto) {
for (it = captureRequest->mSettingsList.begin();
it != captureRequest->mSettingsList.end(); it++) {
auto mapper = parent->mRotateAndCropMappers.find(it->cameraId);
if (mapper != parent->mRotateAndCropMappers.end()) {
res = mapper->second.updateCaptureRequest(&(it->metadata));
if (res != OK) {
SET_ERR("RequestThread: Unable to correct capture requests "
"for rotate-and-crop for request %d: %s (%d)",
halRequest->frame_number, strerror(-res), res);
return INVALID_OPERATION;
}
}
}
}
}
}
/**
* The request should be presorted so accesses in HAL
* are O(logn). Sidenote, sorting a sorted metadata is nop.
*/
captureRequest->mSettingsList.begin()->metadata.sort();
halRequest->settings = captureRequest->mSettingsList.begin()->metadata.getAndLock();
mPrevRequest = captureRequest;
mPrevCameraIdsWithZoom = cameraIdsWithZoom;
ALOGVV("%s: Request settings are NEW", __FUNCTION__);
IF_ALOGV() {
camera_metadata_ro_entry_t e = camera_metadata_ro_entry_t();
find_camera_metadata_ro_entry(
halRequest->settings,
ANDROID_CONTROL_AF_TRIGGER,
&e
);
if (e.count > 0) {
ALOGV("%s: Request (frame num %d) had AF trigger 0x%x",
__FUNCTION__,
halRequest->frame_number,
e.data.u8[0]);
}
}
} else {
// leave request.settings NULL to indicate 'reuse latest given'
ALOGVV("%s: Request settings are REUSED",
__FUNCTION__);
}
if (captureRequest->mSettingsList.size() > 1) {
halRequest->num_physcam_settings = captureRequest->mSettingsList.size() - 1;
halRequest->physcam_id = new const char* [halRequest->num_physcam_settings];
if (newRequest) {
halRequest->physcam_settings =
new const camera_metadata* [halRequest->num_physcam_settings];
} else {
halRequest->physcam_settings = nullptr;
}
auto it = ++captureRequest->mSettingsList.begin();
size_t i = 0;
for (; it != captureRequest->mSettingsList.end(); it++, i++) {
halRequest->physcam_id[i] = it->cameraId.c_str();
if (newRequest) {
it->metadata.sort();
halRequest->physcam_settings[i] = it->metadata.getAndLock();
}
}
}
uint32_t totalNumBuffers = 0;
// Fill in buffers
if (captureRequest->mInputStream != NULL) {
halRequest->input_buffer = &captureRequest->mInputBuffer;
totalNumBuffers += 1;
} else {
halRequest->input_buffer = NULL;
}
// 构造一个camera3_stream_buffer的对象,并将其放入outputBuffers的容器中
// 插在序号0的后面,插入个数为captureRequest->mOutputStreams.size(),一般为1个
outputBuffers->insertAt(camera3_stream_buffer_t(), 0,
captureRequest->mOutputStreams.size());
// halRequest->output_buffers 指向的是上一步插入buffer的地址,应该是camera3_stream_buffer对象的地址
halRequest->output_buffers = outputBuffers->array();
std::set<String8> requestedPhysicalCameras;
sp<Camera3Device> parent = mParent.promote();
if (parent == NULL) {
// Should not happen, and nowhere to send errors to, so just log it
CLOGE("RequestThread: Parent is gone");
return INVALID_OPERATION;
}
nsecs_t waitDuration = kBaseGetBufferWait + parent->getExpectedInFlightDuration();
SurfaceMap uniqueSurfaceIdMap;
for (size_t j = 0; j < captureRequest->mOutputStreams.size(); j++) {
sp<Camera3OutputStreamInterface> outputStream =
captureRequest->mOutputStreams.editItemAt(j);
int streamId = outputStream->getId();
// Prepare video buffers for high speed recording on the first video request.
if (mPrepareVideoStream && outputStream->isVideoStream()) {
// Only try to prepare video stream on the first video request.
mPrepareVideoStream = false;
res = outputStream->startPrepare(Camera3StreamInterface::ALLOCATE_PIPELINE_MAX,
false /*blockRequest*/);
while (res == NOT_ENOUGH_DATA) {
res = outputStream->prepareNextBuffer();
}
if (res != OK) {
ALOGW("%s: Preparing video buffers for high speed failed: %s (%d)",
__FUNCTION__, strerror(-res), res);
outputStream->cancelPrepare();
}
}
std::vector<size_t> uniqueSurfaceIds;
res = outputStream->getUniqueSurfaceIds(
captureRequest->mOutputSurfaces[streamId],
&uniqueSurfaceIds);
// INVALID_OPERATION is normal output for streams not supporting surfaceIds
if (res != OK && res != INVALID_OPERATION) {
ALOGE("%s: failed to query stream %d unique surface IDs",
__FUNCTION__, streamId);
return res;
}
if (res == OK) {
uniqueSurfaceIdMap.insert({streamId, std::move(uniqueSurfaceIds)});
}
if (mUseHalBufManager) {
if (outputStream->isAbandoned()) {
ALOGV("%s: stream %d is abandoned, skipping request", __FUNCTION__, streamId);
return TIMED_OUT;
}
// HAL will request buffer through requestStreamBuffer API
camera3_stream_buffer_t& buffer = outputBuffers->editItemAt(j);
buffer.stream = outputStream->asHalStream();
buffer.buffer = nullptr;
buffer.status = CAMERA3_BUFFER_STATUS_OK;
buffer.acquire_fence = -1;
buffer.release_fence = -1;
} else {
// outputStream的类型为Camera3OutputStream
res = outputStream->getBuffer(&outputBuffers->editItemAt(j),
waitDuration,
captureRequest->mOutputSurfaces[streamId]);
if (res != OK) {
// Can't get output buffer from gralloc queue - this could be due to
// abandoned queue or other consumer misbehavior, so not a fatal
// error
ALOGV("RequestThread: Can't get output buffer, skipping request:"
" %s (%d)", strerror(-res), res);
return TIMED_OUT;
}
}
{
sp<Camera3Device> parent = mParent.promote();
if (parent != nullptr) {
const String8& streamCameraId = outputStream->getPhysicalCameraId();
for (const auto& settings : captureRequest->mSettingsList) {
if ((streamCameraId.isEmpty() &&
parent->getId() == settings.cameraId.c_str()) ||
streamCameraId == settings.cameraId.c_str()) {
outputStream->fireBufferRequestForFrameNumber(
captureRequest->mResultExtras.frameNumber,
settings.metadata);
}
}
}
}
String8 physicalCameraId = outputStream->getPhysicalCameraId();
if (!physicalCameraId.isEmpty()) {
// Physical stream isn't supported for input request.
if (halRequest->input_buffer) {
CLOGE("Physical stream is not supported for input request");
return INVALID_OPERATION;
}
requestedPhysicalCameras.insert(physicalCameraId);
}
halRequest->num_output_buffers++;
}
totalNumBuffers += halRequest->num_output_buffers;
// Log request in the in-flight queue
// If this request list is for constrained high speed recording (not
// preview), and the current request is not the last one in the batch,
// do not send callback to the app.
bool hasCallback = true;
if (batchedRequest && i != mNextRequests.size()-1) {
hasCallback = false;
}
bool isStillCapture = false;
bool isZslCapture = false;
if (!mNextRequests[0].captureRequest->mSettingsList.begin()->metadata.isEmpty()) {
camera_metadata_ro_entry_t e = camera_metadata_ro_entry_t();
find_camera_metadata_ro_entry(halRequest->settings, ANDROID_CONTROL_CAPTURE_INTENT, &e);
if ((e.count > 0) && (e.data.u8[0] == ANDROID_CONTROL_CAPTURE_INTENT_STILL_CAPTURE)) {
isStillCapture = true;
ATRACE_ASYNC_BEGIN("still capture", mNextRequests[i].halRequest.frame_number);
}
find_camera_metadata_ro_entry(halRequest->settings, ANDROID_CONTROL_ENABLE_ZSL, &e);
if ((e.count > 0) && (e.data.u8[0] == ANDROID_CONTROL_ENABLE_ZSL_TRUE)) {
isZslCapture = true;
}
}
res = parent->registerInFlight(halRequest->frame_number,
totalNumBuffers, captureRequest->mResultExtras,
/*hasInput*/halRequest->input_buffer != NULL,
hasCallback,
calculateMaxExpectedDuration(halRequest->settings),
requestedPhysicalCameras, isStillCapture, isZslCapture,
captureRequest->mRotateAndCropAuto, mPrevCameraIdsWithZoom,
(mUseHalBufManager) ? uniqueSurfaceIdMap :
SurfaceMap{});
ALOGVV("%s: registered in flight requestId = %" PRId32 ", frameNumber = %" PRId64
", burstId = %" PRId32 ".",
__FUNCTION__,
captureRequest->mResultExtras.requestId, captureRequest->mResultExtras.frameNumber,
captureRequest->mResultExtras.burstId);
if (res != OK) {
SET_ERR("RequestThread: Unable to register new in-flight request:"
" %s (%d)", strerror(-res), res);
return INVALID_OPERATION;
}
}
return OK;
}
分析该方法前,我们一定要清楚,该方法中完成了一个非常重要的目的,就是output buffer的准备,HAL所有的工作都是围绕输出的Buffer来操作的,所以看完这个方法,我们必须搞清楚,output buffer是如何准备的,准备到哪里去了。整个方法就一个for循环,对入参的每个Request进行处理,接下来的逻辑都是在给成员变量halRequest的子变量进行赋值,一步一步的完成halRequest的构建,输出Buffer就是成员变量outputBuffers了,它的准备就是调用outputStream->getBuffer(&outputBuffers->editItemAt(j), captureRequest->mOutputSurfaces[j])实现的。这里我们假定outputStream的类型为Camera3OutputStream(还有其他类型的Stream,比如Camera3SharedOutputStream);
4.3 sendRequestsBatch()
将准备好的Request发往HAL进程去处理,该方法的源码如下:
bool Camera3Device::RequestThread::sendRequestsBatch() {
ATRACE_CALL();
status_t res;
size_t batchSize = mNextRequests.size();
std::vector<camera3_capture_request_t*> requests(batchSize);
uint32_t numRequestProcessed = 0;
for (size_t i = 0; i < batchSize; i++) {
requests[i] = &mNextRequests.editItemAt(i).halRequest;
ATRACE_ASYNC_BEGIN("frame capture", mNextRequests[i].halRequest.frame_number);
}
// 将准备好的Request发往HAL进程去处理
res = mInterface->processBatchCaptureRequests(requests, &numRequestProcessed);
bool triggerRemoveFailed = false;
NextRequest& triggerFailedRequest = mNextRequests.editItemAt(0);
for (size_t i = 0; i < numRequestProcessed; i++) {
NextRequest& nextRequest = mNextRequests.editItemAt(i);
// 请求处理完成之后,submitted被赋值为true
nextRequest.submitted = true;
updateNextRequest(nextRequest);
if (!triggerRemoveFailed) {
// Remove any previously queued triggers (after unlock)
status_t removeTriggerRes = removeTriggers(mPrevRequest);
if (removeTriggerRes != OK) {
triggerRemoveFailed = true;
triggerFailedRequest = nextRequest;
}
}
}
if (triggerRemoveFailed) {
SET_ERR("RequestThread: Unable to remove triggers "
"(capture request %d, HAL device: %s (%d)",
triggerFailedRequest.halRequest.frame_number, strerror(-res), res);
cleanUpFailedRequests(/*sendRequestError*/ false);
return false;
}
if (res != OK) {
// Should only get a failure here for malformed requests or device-level
// errors, so consider all errors fatal. Bad metadata failures should
// come through notify.
SET_ERR("RequestThread: Unable to submit capture request %d to HAL device: %s (%d)",
mNextRequests[numRequestProcessed].halRequest.frame_number,
strerror(-res), res);
cleanUpFailedRequests(/*sendRequestError*/ false);
return false;
}
return true;
}
所有的request都已经准备好了,所以就调用mInterface->processBatchCaptureRequests(requests, &numRequestProcessed)来处理请求了,mInterface的类型为HalInterface,这里也就是分水领了,从这句代码往后,当前的Request就被处理了,所以nextRequest.submitted也就应该被赋值为true了。我们继续来看一下processBatchCaptureRequests的逻辑,源码如下:
status_t Camera3Device::HalInterface::processBatchCaptureRequests(
std::vector<camera3_capture_request_t*>& requests,/*out*/uint32_t* numRequestProcessed) {
ATRACE_NAME("CameraHal::processBatchCaptureRequests");
if (!valid()) return INVALID_OPERATION;
sp<device::V3_4::ICameraDeviceSession> hidlSession_3_4;
auto castResult_3_4 = device::V3_4::ICameraDeviceSession::castFrom(mHidlSession);
if (castResult_3_4.isOk()) {
hidlSession_3_4 = castResult_3_4;
}
hardware::hidl_vec<device::V3_2::CaptureRequest> captureRequests;
hardware::hidl_vec<device::V3_4::CaptureRequest> captureRequests_3_4;
size_t batchSize = requests.size();
if (hidlSession_3_4 != nullptr) {
captureRequests_3_4.resize(batchSize);
} else {
captureRequests.resize(batchSize);
}
std::vector<native_handle_t*> handlesCreated;
std::vector<std::pair<int32_t, int32_t>> inflightBuffers;
status_t res = OK;
for (size_t i = 0; i < batchSize; i++) {
if (hidlSession_3_4 != nullptr) {
res = wrapAsHidlRequest(requests[i], /*out*/&captureRequests_3_4[i].v3_2,
/*out*/&handlesCreated, /*out*/&inflightBuffers);
} else {
// Android O的逻辑,没有if-else判断
//for (size_t i = 0; i < batchSize; i++) {
// wrapAsHidlRequest(requests[i], /*out*/&captureRequests[i], /*out*/&handlesCreated);
//}
res = wrapAsHidlRequest(requests[i], /*out*/&captureRequests[i],
/*out*/&handlesCreated, /*out*/&inflightBuffers);
}
if (res != OK) {
mBufferRecords.popInflightBuffers(inflightBuffers);
cleanupNativeHandles(&handlesCreated);
return res;
}
}
std::vector<device::V3_2::BufferCache> cachesToRemove;
{
std::lock_guard<std::mutex> lock(mFreedBuffersLock);
for (auto& pair : mFreedBuffers) {
// The stream might have been removed since onBufferFreed
if (mBufferRecords.isStreamCached(pair.first)) {
cachesToRemove.push_back({pair.first, pair.second});
}
}
mFreedBuffers.clear();
}
common::V1_0::Status status = common::V1_0::Status::INTERNAL_ERROR;
*numRequestProcessed = 0;
// Write metadata to FMQ.
for (size_t i = 0; i < batchSize; i++) {
camera3_capture_request_t* request = requests[i];
device::V3_2::CaptureRequest* captureRequest;
if (hidlSession_3_4 != nullptr) {
captureRequest = &captureRequests_3_4[i].v3_2;
} else {
captureRequest = &captureRequests[i];
}
if (request->settings != nullptr) {
size_t settingsSize = get_camera_metadata_size(request->settings);
if (mRequestMetadataQueue != nullptr && mRequestMetadataQueue->write(
reinterpret_cast<const uint8_t*>(request->settings), settingsSize)) {
captureRequest->settings.resize(0);
captureRequest->fmqSettingsSize = settingsSize;
} else {
if (mRequestMetadataQueue != nullptr) {
ALOGW("%s: couldn't utilize fmq, fallback to hwbinder", __FUNCTION__);
}
captureRequest->settings.setToExternal(
reinterpret_cast<uint8_t*>(const_cast<camera_metadata_t*>(request->settings)),
get_camera_metadata_size(request->settings));
captureRequest->fmqSettingsSize = 0u;
}
} else {
// A null request settings maps to a size-0 CameraMetadata
captureRequest->settings.resize(0);
captureRequest->fmqSettingsSize = 0u;
}
if (hidlSession_3_4 != nullptr) {
captureRequests_3_4[i].physicalCameraSettings.resize(request->num_physcam_settings);
for (size_t j = 0; j < request->num_physcam_settings; j++) {
if (request->physcam_settings != nullptr) {
size_t settingsSize = get_camera_metadata_size(request->physcam_settings[j]);
if (mRequestMetadataQueue != nullptr && mRequestMetadataQueue->write(
reinterpret_cast<const uint8_t*>(request->physcam_settings[j]),
settingsSize)) {
captureRequests_3_4[i].physicalCameraSettings[j].settings.resize(0);
captureRequests_3_4[i].physicalCameraSettings[j].fmqSettingsSize =
settingsSize;
} else {
if (mRequestMetadataQueue != nullptr) {
ALOGW("%s: couldn't utilize fmq, fallback to hwbinder", __FUNCTION__);
}
captureRequests_3_4[i].physicalCameraSettings[j].settings.setToExternal(
reinterpret_cast<uint8_t*>(const_cast<camera_metadata_t*>(
request->physcam_settings[j])),
get_camera_metadata_size(request->physcam_settings[j]));
captureRequests_3_4[i].physicalCameraSettings[j].fmqSettingsSize = 0u;
}
} else {
captureRequests_3_4[i].physicalCameraSettings[j].fmqSettingsSize = 0u;
captureRequests_3_4[i].physicalCameraSettings[j].settings.resize(0);
}
captureRequests_3_4[i].physicalCameraSettings[j].physicalCameraId =
request->physcam_id[j];
}
}
}
hardware::details::return_status err;
auto resultCallback =
[&status, &numRequestProcessed] (auto s, uint32_t n) {
status = s;
*numRequestProcessed = n;
};
if (hidlSession_3_4 != nullptr) {
err = hidlSession_3_4->processCaptureRequest_3_4(captureRequests_3_4, cachesToRemove,
resultCallback);
} else {
err = mHidlSession->processCaptureRequest(captureRequests, cachesToRemove,
resultCallback);
}
if (!err.isOk()) {
ALOGE("%s: Transaction error: %s", __FUNCTION__, err.description().c_str());
status = common::V1_0::Status::CAMERA_DISCONNECTED;
}
if (status == common::V1_0::Status::OK && *numRequestProcessed != batchSize) {
ALOGE("%s: processCaptureRequest returns OK but processed %d/%zu requests",
__FUNCTION__, *numRequestProcessed, batchSize);
status = common::V1_0::Status::INTERNAL_ERROR;
}
res = CameraProviderManager::mapToStatusT(status);
if (res == OK) {
if (mHidlSession->isRemote()) {
// Only close acquire fence FDs when the HIDL transaction succeeds (so the FDs have been
// sent to camera HAL processes)
cleanupNativeHandles(&handlesCreated, /*closeFd*/true);
} else {
// In passthrough mode the FDs are now owned by HAL
cleanupNativeHandles(&handlesCreated);
}
} else {
mBufferRecords.popInflightBuffers(inflightBuffers);
cleanupNativeHandles(&handlesCreated);
}
return res;
}
这里先调用wrapAsHidlRequest对每个Request进一步包装,我们来看一下它的实现,源码如下:
status_t Camera3Device::HalInterface::wrapAsHidlRequest(camera3_capture_request_t* request,
/*out*/device::V3_2::CaptureRequest* captureRequest,
/*out*/std::vector<native_handle_t*>* handlesCreated,
/*out*/std::vector<std::pair<int32_t, int32_t>>* inflightBuffers) {
ATRACE_CALL();
if (captureRequest == nullptr || handlesCreated == nullptr || inflightBuffers == nullptr) {
ALOGE("%s: captureRequest (%p), handlesCreated (%p), and inflightBuffers(%p) "
"must not be null", __FUNCTION__, captureRequest, handlesCreated, inflightBuffers);
return BAD_VALUE;
}
// 帧号的赋值
captureRequest->frameNumber = request->frame_number;
captureRequest->fmqSettingsSize = 0;
{
if (request->input_buffer != nullptr) {
int32_t streamId = Camera3Stream::cast(request->input_buffer->stream)->getId();
buffer_handle_t buf = *(request->input_buffer->buffer);
auto pair = getBufferId(buf, streamId);
bool isNewBuffer = pair.first;
uint64_t bufferId = pair.second;
captureRequest->inputBuffer.streamId = streamId;
captureRequest->inputBuffer.bufferId = bufferId;
captureRequest->inputBuffer.buffer = (isNewBuffer) ? buf : nullptr;
captureRequest->inputBuffer.status = BufferStatus::OK;
native_handle_t *acquireFence = nullptr;
if (request->input_buffer->acquire_fence != -1) {
acquireFence = native_handle_create(1,0);
acquireFence->data[0] = request->input_buffer->acquire_fence;
handlesCreated->push_back(acquireFence);
}
captureRequest->inputBuffer.acquireFence = acquireFence;
captureRequest->inputBuffer.releaseFence = nullptr;
mBufferRecords.pushInflightBuffer(captureRequest->frameNumber, streamId,
request->input_buffer->buffer);
inflightBuffers->push_back(std::make_pair(captureRequest->frameNumber, streamId));
} else {
captureRequest->inputBuffer.streamId = -1;
captureRequest->inputBuffer.bufferId = BUFFER_ID_NO_BUFFER;
}
captureRequest->outputBuffers.resize(request->num_output_buffers);
for (size_t i = 0; i < request->num_output_buffers; i++) {
// 将上面已经分析过的Surface中取出的buffer拿出来
const camera3_stream_buffer_t *src = request->output_buffers + i;
StreamBuffer &dst = captureRequest->outputBuffers[i];
int32_t streamId = Camera3Stream::cast(src->stream)->getId();
if (src->buffer != nullptr) {
buffer_handle_t buf = *(src->buffer);
auto pair = getBufferId(buf, streamId);
bool isNewBuffer = pair.first;
dst.bufferId = pair.second;
// 将src->buffer赋值给dst,即将Surface中的buffer赋值给dst
dst.buffer = isNewBuffer ? buf : nullptr;
native_handle_t *acquireFence = nullptr;
if (src->acquire_fence != -1) {
acquireFence = native_handle_create(1,0);
acquireFence->data[0] = src->acquire_fence;
handlesCreated->push_back(acquireFence);
}
dst.acquireFence = acquireFence;
} else if (mUseHalBufManager) {
// HAL buffer management path
dst.bufferId = BUFFER_ID_NO_BUFFER;
dst.buffer = nullptr;
dst.acquireFence = nullptr;
} else {
ALOGE("%s: cannot send a null buffer in capture request!", __FUNCTION__);
return BAD_VALUE;
}
dst.streamId = streamId;
dst.status = BufferStatus::OK;
dst.releaseFence = nullptr;
// Output buffers are empty when using HAL buffer manager
if (!mUseHalBufManager) {
// 调用pushInflightBufferLocked以帧号(captureRequest->frameNumber)、streamId、src->buffer、src->acquire_fence为参数将buffer保存在成员变量mInflightBufferMap中
mBufferRecords.pushInflightBuffer(
captureRequest->frameNumber, streamId, src->buffer);
inflightBuffers->push_back(std::make_pair(captureRequest->frameNumber, streamId));
}
}
}
return OK;
}
可以看到,captureRequest->frameNumber = request->frame_number帧号的赋值,第一位,说明非常重要!!下面就是对buffer处理了,在output buffer中,通过const camera3_stream_buffer_t *src = request->output_buffers + i 将上面我们已经分析过的Surface中取出的buffer拿出来,然后调用 dst.buffer = isNewBuffer ? buf : nullptr 将它操作赋值给dst,我在这里打日志观察过,申请的几个buffer一直是复用的,isNewBuffer肯定是true,要不然输出buffer就为空了,而复用的就是分配了几个buffer,然后这几个buffer一直不断的轮转,比如1、2、3、4、5、6,然后又1、2、3、4、5、6一直往复循环的,大家也可以自己加日志研究一下这块的逻辑,最后调用pushInflightBufferLocked以帧号(captureRequest->frameNumber)、streamId、src->buffer、src->acquire_fence为参数将buffer保存在成员变量mInflightBufferMap中,后续HAL层对buffer填充完毕后,这里就可以直接从mInflightBufferMap当中取出来了;
wrapAsHidlRequest()方法执行完成之后,紧接着调用mHidlSession->processCaptureRequest()把Request发到HAL进程当中,这是通过HIDL来实现的,其实最根本的还是Binder框架。
processBatchCaptureRequests()方法就执行完了,即sendRequestsBatch()执行完毕;
5 mNextRequests.clear()
一帧请求处理完成,最后调用mNextRequests.clear()清空数据,成功返回true,继续下一次循环;