挑战全网最简洁快速平方根倒数算法讲解

360 阅读2分钟

一句话介绍

功能等同于函数(x) => 1 / Math.sqrt(x)源码传送门

float Q_rsqrt( float number )
{
    long i;
    float x2, y;
    const float threehalfs = 1.5F;x2 = number * 0.5F;
    y  = number;
    i  = * ( long * ) &y;                       // evil floating point bit level hacking
    i  = 0x5f3759df - ( i >> 1 );               // what the fuck?
    y  = * ( float * ) &i;
    y  = y * ( threehalfs - ( x2 * y * y ) );   // 1st iteration
//  y  = y * ( threehalfs - ( x2 * y * y ) );   // 2nd iteration, this can be removed#ifndef Q3_VM
#ifdef __linux__
    assert( !isnan(y) ); // bk010122 - FPE?
#endif
#endif
    return y;
}

前置知识

牛顿迭代:本文用到的公式:y = 1 / sqrt(x) -> 1 / y^2 - x = 0代入得结果。

IEEE-754浮点数表示:一句话总结:正数的符号位肯定为0,x = (1 + M / 2^23) * 2^(E - 127)

推导过程

上述代码只有这几行

i  = * ( long * ) &y;
i  = 0x5f3759df - ( i >> 1 );
y  = * ( float * ) &i;

是不那么显然的。

考虑x ^ -0.5的对数:-0.5 * (log2(1 + M / 2^23) + (E - 127))log2(1 + M / 2^23)必定属于[0, 1),所以可以近似为M / 2^23。于是log2(x) ≈ (M + 2^23 * E - 2^23 * 127) / 2^23,其中M + 2^23 * E就是将浮点数解释为int后的值,记为blog2(x) ≈ b / 2^23 - 127。设结果A = log2(x ^ -0.5)的这一部分为a,则a / 2^23 - 127 = -0.5 * (b / 2^23 - 127),解得a = 381 * 2^22 - (b >> 1)

至此我们已经能够理解整个算法。但上述代码的magic number并不是381 * 2^22。别着急,我们马上讨论。

误差分析

从直觉来看需要将y = x稍微上移才能得到最优近似,所以我们设v = err(x) = log2(x + 1) - x, x ∈ [0, 1)。根据参考链接2,计算v常用的方式有:

  1. (max(err(v)) + min(err(v))) / 2err'(x) = 1 / (log(2) * (1 + x)) - 1,曲线先升后降,所以x = 1 / log(2) - 1得最大值,结果为0.0430357
  2. err(x)[0,1]上积分的平均。在wolframalpha中算积分Integrate[log2(1+x)-x,x]let g = x => (2*(x+1)*Math.log(x+1)-x*(x*Math.log(2)+2))/Math.log(4),代入得0.057304959

然而,这些都只是我个人的猜测。已知最终作者使用的magic number是0x5f3759df,我们来算下最终作者选用的v值。log2(1 + M / 2^23)的最优近似为M / 2^23 + v,于是log2(x) ≈ b / 2^23 - 127 - v => a / 2^23 - 127 - v = -0.5 * (b / 2^23 - 127 - v),得v = 0.0450465679

课后作业

实现double的版本。

#include <bits/stdc++.h>
// Copyright 2023 hans7double q_rsqrt(double v) {
  int64_t tmp = *reinterpret_cast<int64_t*>(&v);
  tmp = 6910773628200026112LL - (tmp >> 1);
  double res = *reinterpret_cast<double*>(&tmp);
  res = res * (1.5 - v * 0.5 * res * res);
  return res;
}
​
int main(int, char**) {
  srand(time(nullptr));
  int v = rand();
  printf("%d %.10lf %.10lf\n", v, q_rsqrt(v), abs(q_rsqrt(v) - 1 / sqrt(v)));
  return 0;
}

参考资料

  1. www.matrix67.com/data/InvSqr…
  2. blog.csdn.net/Skywalker11…