效果

项目

代码
using Microsoft.ML.OnnxRuntime
using Microsoft.ML.OnnxRuntime.Tensors
using OpenCvSharp
using System
using System.Collections.Generic
using System.Drawing
using System.Linq
using System.Text
using System.Windows.Forms
namespace Onnx_Demo
{
public partial class frmMain : Form
{
public frmMain()
{
InitializeComponent()
}
string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png"
string image_path = ""
string startupPath
string model_path
DateTime dt1 = DateTime.Now
DateTime dt2 = DateTime.Now
int inpHeight = 360
int inpWidth = 640
int outHeight = 360
int outWidth = 640
Mat image
Mat result_image
SessionOptions options
InferenceSession onnx_session
Tensor<float> input_tensor
List<NamedOnnxValue> input_ontainer
IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer
DisposableNamedOnnxValue[] results_onnxvalue
Tensor<float> result_tensors
float[] result_array
StringBuilder sb = new StringBuilder()
private void button1_Click(object sender, EventArgs e)
{
OpenFileDialog ofd = new OpenFileDialog()
ofd.Filter = fileFilter
if (ofd.ShowDialog() != DialogResult.OK) return
pictureBox1.Image = null
pictureBox2.Image = null
textBox1.Text = ""
image_path = ofd.FileName
pictureBox1.Image = new Bitmap(image_path)
image = new Mat(image_path)
}
private void Form1_Load(object sender, EventArgs e)
{
startupPath = Application.StartupPath + "\\model\\"
model_path = startupPath + "LDC_640x360.onnx"
// 创建输出会话
options = new SessionOptions()
options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO
options.AppendExecutionProvider_CPU(0)
// 创建推理模型类,读取本地模型文件
onnx_session = new InferenceSession(model_path, options)
// 输入Tensor
input_tensor = new DenseTensor<float>(new[] { 1, 3, inpHeight, inpWidth })
// 创建输入容器
input_ontainer = new List<NamedOnnxValue>()
}
private void button2_Click(object sender, EventArgs e)
{
if (image_path == "")
{
return
}
textBox1.Text = "检测中,请稍等……"
pictureBox2.Image = null
Application.DoEvents()
//图片
image = new Mat(image_path)
Mat resize_image = new Mat()
Cv2.Resize(image, resize_image, new OpenCvSharp.Size(inpWidth, inpHeight))
// 输入Tensor
for (int y = 0
{
for (int x = 0
{
input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0]
input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1]
input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2]
}
}
//将 input_tensor 放入一个输入参数的容器,并指定名称
input_ontainer.Add(NamedOnnxValue.CreateFromTensor("input_image", input_tensor))
dt1 = DateTime.Now
//运行 Inference 并获取结果
result_infer = onnx_session.Run(input_ontainer)
dt2 = DateTime.Now
Mat average_image = Mat.Zeros(image.Rows, image.Cols, MatType.CV_32FC1)
Mat fuse_image = new Mat(image.Rows, image.Cols, MatType.CV_8UC1)
results_onnxvalue = result_infer.ToArray()
for (int i = 0
{
result_tensors = results_onnxvalue[i].AsTensor<float>()
result_array = result_tensors.ToArray()
Mat result = new Mat(outHeight, outWidth, MatType.CV_32FC1, result_array)
Mat TmpExp = new Mat()
Cv2.Exp(-result, TmpExp)
Mat mask = 1.0 / (1.0 + TmpExp)
double min_value, max_value
Cv2.MinMaxLoc(mask, out min_value, out max_value)
mask = (mask - min_value) * 255.0 / (max_value - min_value + 1e-12)
mask.ConvertTo(mask, MatType.CV_8UC1)
Cv2.BitwiseNot(mask, mask)
Cv2.Resize(mask, mask, new OpenCvSharp.Size(image.Cols, image.Rows))
Cv2.Accumulate(mask,average_image, mask)
fuse_image = mask
}
average_image = average_image / (float)results_onnxvalue.Length
average_image.ConvertTo(average_image, MatType.CV_8UC1)
result_image = average_image.Clone()
if (!result_image.Empty())
{
//Cv2.ImShow("LDC-average_image", average_image)
//Cv2.ImShow("LDC-fuse_image", fuse_image)
pictureBox2.Image = new Bitmap(result_image.ToMemoryStream())
sb.Clear()
sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms")
textBox1.Text = sb.ToString()
}
else
{
textBox1.Text = "无信息"
}
}
private void pictureBox2_DoubleClick(object sender, EventArgs e)
{
Common.ShowNormalImg(pictureBox2.Image)
}
private void pictureBox1_DoubleClick(object sender, EventArgs e)
{
Common.ShowNormalImg(pictureBox1.Image)
}
}
}
下载
可执行程序exe包0积分下载
源码下载