一.模版
所有的区间dp问题枚举时: 第一维通常是枚举区间长度,并且一般len = 1时用来初始化,枚举从len = 2开始;第二维枚举起点i(右端点 j 自动获得,j = i + len - 1)
模版代码
for (int len = 1; len <= n; len++) { // 区间长度
for (int i = 1; i + len - 1 <= n; i++) { // 枚举起点
int j = i + len - 1; // 区间终点
if (len == 1) {
dp[i][j] = 初始值
continue;
}
for (int k = i; k < j; k++) { // 枚举分割点,构造状态转移方程
dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + 1][j] + w[i][j]);
}
}
}
二.题目
合并石子
设有 NN 堆石子排成一排,其编号为 1,2,3,…,N1,2,3,…,N。
每堆石子有一定的质量,可以用一个整数来描述,现在要将这 NN 堆石子合并成为一堆。
每次只能合并相邻的两堆,合并的代价为这两堆石子的质量之和,合并后与这两堆石子相邻的石子将和新堆相邻,合并时由于选择的顺序不同,合并的总代价也不相同。
例如有 44 堆石子分别为 1 3 5 2, 我们可以先合并 1、21、2 堆,代价为 44,得到 4 5 2, 又合并 1、21、2 堆,代价为 99,得到 9 2 ,再合并得到 1111,总代价为 4+9+11=244+9+11=24;
如果第二步是先合并 2、32、3 堆,则代价为 77,得到 4 7,最后一次合并代价为 1111,总代价为 4+7+11=224+7+11=22。
问题是:找出一种合理的方法,使总的代价最小,输出最小代价。
输入格式
第一行一个数 NN 表示石子的堆数 NN。
第二行 NN 个数,表示每堆石子的质量(均不超过 10001000)。
输出格式
输出一个整数,表示最小代价。
数据范围
1≤N≤3001≤N≤300
输入样例:
4
1 3 5 2
输出样例:
22
解答代码:
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int[] a = new int[n + 1];
for(int i = 1; i <= n; i++) {
a[i] = in.nextInt();
a[i] += a[i - 1];
}
int[][] f = new int[n + 1][n + 1];
for (int len = 2; len <= n; len ++) {
for (int i = 1; i + len - 1 <= n; i ++) {
int j = i + len - 1;
f[i][j] = (int)1e9;
for (int k = i ; k < j; k ++) {
f[i][j] = Math.min(f[i][j], f[i][k] + f[k + 1][j] + a[j] - a[i - 1]);
}
}
}
System.out.println(f[1][n]);
}
}