效果

项目

代码
using OpenCvSharp
using OpenCvSharp.Dnn
using System
using System.Collections.Generic
using System.ComponentModel
using System.Data
using System.Drawing
using System.Linq
using System.Text
using System.Windows.Forms
namespace OpenCvSharp_Yolov8_Demo
{
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent()
}
string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png"
string image_path = ""
string startupPath
string classer_path
DateTime dt1 = DateTime.Now
DateTime dt2 = DateTime.Now
string model_path
Mat image
PoseResult result_pro
Mat result_mat
Mat result_image
Mat result_mat_to_float
Net opencv_net
Mat BN_image
float[] result_array
float[] factors
int max_image_length
Mat max_image
Rect roi
Result result
StringBuilder sb = new StringBuilder()
private void Form1_Load(object sender, EventArgs e)
{
startupPath = System.Windows.Forms.Application.StartupPath
model_path = startupPath + "\\yolov8n-pose.onnx"
classer_path = startupPath + "\\yolov8-detect-lable.txt"
//初始化网络类,读取本地模型
opencv_net = CvDnn.ReadNetFromOnnx(model_path)
result_array = new float[8400 * 56]
factors = new float[2]
result_pro = new PoseResult(factors)
}
private void button1_Click(object sender, EventArgs e)
{
OpenFileDialog ofd = new OpenFileDialog()
ofd.Filter = fileFilter
if (ofd.ShowDialog() != DialogResult.OK) return
pictureBox1.Image = null
image_path = ofd.FileName
pictureBox1.Image = new Bitmap(image_path)
textBox1.Text = ""
image = new Mat(image_path)
pictureBox2.Image = null
}
private void button2_Click(object sender, EventArgs e)
{
if (image_path == "")
{
return
}
//缩放图片
max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows
max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3)
roi = new Rect(0, 0, image.Cols, image.Rows)
image.CopyTo(new Mat(max_image, roi))
factors[0] = factors[1] = (float)(max_image_length / 640.0)
//数据归一化处理
BN_image = CvDnn.BlobFromImage(max_image, 1 / 255.0, new OpenCvSharp.Size(640, 640), new Scalar(0, 0, 0), true, false)
//配置图片输入数据
opencv_net.SetInput(BN_image)
dt1 = DateTime.Now
//模型推理,读取推理结果
result_mat = opencv_net.Forward()
dt2 = DateTime.Now
//将推理结果转为float数据类型
result_mat_to_float = new Mat(8400, 56, MatType.CV_32F, result_mat.Data)
//将数据读取到数组中
result_mat_to_float.GetArray<float>(out result_array)
result = result_pro.process_result(result_array)
result_image = result_pro.draw_result(result, image.Clone())
if (!result_image.Empty())
{
pictureBox2.Image = new Bitmap(result_image.ToMemoryStream())
sb.Clear()
sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms")
sb.AppendLine("------------------------------")
textBox1.Text = sb.ToString()
}
else
{
textBox1.Text = "无信息"
}
}
}
}
Demo下载