效果



Lable
five
four
one
three
two
项目

代码
using Microsoft.ML.OnnxRuntime
using Microsoft.ML.OnnxRuntime.Tensors
using OpenCvSharp
using System
using System.Collections.Generic
using System.ComponentModel
using System.Data
using System.Drawing
using System.Linq
using System.Text
using System.Windows.Forms
using static System.Net.Mime.MediaTypeNames
namespace Onnx_Yolov8_Demo
{
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent()
}
string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png"
string image_path = ""
string startupPath
string classer_path
DateTime dt1 = DateTime.Now
DateTime dt2 = DateTime.Now
string model_path
Mat image
DetectionResult result_pro
Mat result_image
SessionOptions options
InferenceSession onnx_session
Tensor<float> input_tensor
List<NamedOnnxValue> input_ontainer
IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer
DisposableNamedOnnxValue[] results_onnxvalue
Tensor<float> result_tensors
float[] result_array = new float[8400 * 9]
float[] factors = new float[2]
Result result
StringBuilder sb = new StringBuilder()
private void button1_Click(object sender, EventArgs e)
{
OpenFileDialog ofd = new OpenFileDialog()
ofd.Filter = fileFilter
if (ofd.ShowDialog() != DialogResult.OK) return
pictureBox1.Image = null
image_path = ofd.FileName
pictureBox1.Image = new Bitmap(image_path)
textBox1.Text = ""
image = new Mat(image_path)
pictureBox2.Image = null
}
private void button2_Click(object sender, EventArgs e)
{
if (image_path == "")
{
return
}
// 配置图片数据
image = new Mat(image_path)
int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows
Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3)
Rect roi = new Rect(0, 0, image.Cols, image.Rows)
image.CopyTo(new Mat(max_image, roi))
factors[0] = factors[1] = (float)(max_image_length / 640.0)
// 将图片转为RGB通道
Mat image_rgb = new Mat()
Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB)
Mat resize_image = new Mat()
Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640))
// 输入Tensor
// input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 })
for (int y = 0
{
for (int x = 0
{
input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f
input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f
input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f
}
}
//将 input_tensor 放入一个输入参数的容器,并指定名称
input_ontainer.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor))
dt1 = DateTime.Now
//运行 Inference 并获取结果
result_infer = onnx_session.Run(input_ontainer)
dt2 = DateTime.Now
// 将输出结果转为DisposableNamedOnnxValue数组
results_onnxvalue = result_infer.ToArray()
// 读取第一个节点输出并转为Tensor数据
result_tensors = results_onnxvalue[0].AsTensor<float>()
result_array = result_tensors.ToArray()
resize_image.Dispose()
image_rgb.Dispose()
result_pro = new DetectionResult(classer_path, factors)
result = result_pro.process_result(result_array)
result_image = result_pro.draw_result(result, image.Clone())
if (!result_image.Empty())
{
pictureBox2.Image = new Bitmap(result_image.ToMemoryStream())
sb.Clear()
sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms")
sb.AppendLine("------------------------------")
for (int i = 0
{
sb.AppendLine(string.Format("{0}:{1},({2},{3},{4},{5})"
, result.classes[i]
, result.scores[i].ToString("0.00")
, result.rects[i].TopLeft.X
, result.rects[i].TopLeft.Y
, result.rects[i].BottomRight.X
, result.rects[i].BottomRight.Y
))
}
textBox1.Text = sb.ToString()
}
else
{
textBox1.Text = "无信息"
}
}
private void Form1_Load(object sender, EventArgs e)
{
startupPath = System.Windows.Forms.Application.StartupPath
model_path = startupPath + "\\HandGesture.onnx"
classer_path = startupPath + "\\lable.txt"
// 创建输出会话,用于输出模型读取信息
options = new SessionOptions()
options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO
// 设置为CPU上运行
options.AppendExecutionProvider_CPU(0)
// 创建推理模型类,读取本地模型文件
onnx_session = new InferenceSession(model_path, options)
// 输入Tensor
input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 })
// 创建输入容器
input_ontainer = new List<NamedOnnxValue>()
}
}
}
Demo下载
数据集下载

