Lambda表达式
需求分析
创建一个新的线程,指定线程要执行的任务
public static void main(String[] args) {
// 开启一个新的线程
new Thread(new Runnable() {
@Override
public void run() {
System.out.println("新线程中执行的代码 :"+Thread.currentThread().getName());
}
}).start();
System.out.println("主线程中的代码:" + Thread.currentThread().getName());
}
其实本质就是需要一个Rannbale接口作为参数,其中的抽象方法run方法是用来指定线程任务内容的核心,但实际上,对于这个方法,其实只需要关注run方法体即可,其余的都不需要担心。
Lambda初体验
new Thread(() -> { System.out.println("新线程Lambda表达式..."+Thread.currentThread().getName()); })
.start();
可以清晰的看出,lambda简化了匿名内部类的使用,语法更加简单
Lambda语法规则
Lambda省去了面向对象的条条框框,Lambda的标准格式由3个部分组成:
(参数类型 参数名称) -> {
代码体;
}
格式说明:
- (参数类型 参数名称):参数列表
- {代码体;} :方法体
- -> : 箭头,分割参数列表和方法体
@FunctionalInterface注解
lambda简化了匿名内部类的基本操作,本质上是有限制的,那就是对应的匿名内部类中只能声明一个抽象方法
故使用@FunctionalInterface去声明接口
@FunctionalInterface
public interface UserService {
void show();
}
Lambda表达式的省略写法
在lambda表达式的标准写法基础上,可以使用省略写法的规则为:
- 小括号内的参数类型可以省略
- 如果小括号内有且仅有一个参数,则小括号可以省略
- 如果大括号内有且仅有一个语句,可以同时省略大括号,return 关键字及语句分号。
public static void main(String[] args) {
goStudent((String name,Integer age)->{
return name+age+" 6666 ...";
});
// 省略写法
goStudent((name,age)-> name+age+" 6666 ...");
System.out.println("------");
goOrder((String name)->{
System.out.println("--->" + name);
return 666;
});
// 省略写法
goOrder(name -> {
System.out.println("--->" + name);
return 666;
});
goOrder(name -> 666);
}
public static void goStudent(StudentService studentService){
studentService.show("张三",22);
}
public static void goOrder(OrderService orderService){
orderService.show("李四");
}
Lambda表达式的使用前提
Lambda表达式的语法是非常简洁的,但是Lambda表达式不是随便使用的,使用时有几个条件要特别注 意
- 方法的参数或局部变量类型必须为接口才能使用Lambda
- 接口中有且仅有一个抽象方法(@FunctionalInterface)
Lambda和匿名内部类的对比
Lambda和匿名内部类的对比
- 所需类型不一样
匿名内部类的类型可以是 类,抽象类,接口
Lambda表达式需要的类型必须是接口
- 抽象方法的数量不一样
匿名内部类所需的接口中的抽象方法的数量是随意的
Lambda表达式所需的接口中只能有一个抽象方法
接口新增方法
针对JDK8来讲,在这之前 接口中只有静态常量 和 抽象方法
在jdk8之后,接口中可以有默认方法和静态方法
默认方法
在JDK8以前接口中只能有抽象方法和静态常量,会存在以下的问题: 如果接口中新增抽象方法,那么实现类都必须要抽象这个抽象方法,非常不利于接口的扩展的
如果在接口中定义了默认方法的话,就能有效的解决这个问题
interface A{
void test1();
// 接口中新增抽象方法,所有实现类都需要重写这个方法,不利于接口的扩展
void test2();
/**
* 接口中定义的默认方法
* @return
*/
public default String test3(){
System.out.println("接口中的默认方法执行了...");
return "hello";
}
}
class B implements A{
@Override
public void test1() {
}
@Override
public void test2() {
}
@Override
public String test3() {
System.out.println("B 实现类中重写了默认方法...");
return "ok ...";
}
}
class C implements A{
@Override
public void test1() {
}
@Override
public void test2() {
}
}
接口中的默认方法有两种使用方式
- 实现类直接调用接口的默认方法
- 实现类重写接口的默认方法
静态方法
JDK8中为接口新增了静态方法,作用也是为了接口的扩展
public static void main(String[] args) {
A a = new B();
a.test3();
A c = new C();
c.test3();
A.test4();
}
interface A{
void test1();
// 接口中新增抽象方法,所有实现类都需要重写这个方法,不利于接口的扩展
void test2();
/**
* 接口中定义的默认方法
* @return
*/
public default String test3(){
System.out.println("接口中的默认方法执行了...");
return "hello";
}
/**
* 接口中的静态方法
* @return
*/
public static String test4(){
System.out.println("接口中的静态方法....");
return "Hello";
}
}
class B implements A{
@Override
public void test1() {
}
@Override
public void test2() {
}
@Override
public String test3() {
System.out.println("B 实现类中重写了默认方法...");
return "ok ...";
}
}
class C implements A{
@Override
public void test1() {
}
@Override
public void test2() {
}
}
接口中的静态方法在实现类中是不能被重写的,调用的话只能通过接口类型来实现: 接口名.静态方法名();
两者的区别介绍
- 默认方法通过实例调用,静态方法通过接口名调用
- 默认方法可以被继承,实现类可以直接调用接口默认方法,也可以重写接口默认方法
- 静态方法不能被继承,实现类不能重写接口的静态方法,只能使用接口名调用
函数式接口
首先说一下,我个人认为,这个地方可能和Stream流式接口有关。
我们知道使用Lambda表达式的前提是需要有函数式接口,而Lambda表达式使用时不关心接口名, 抽象方法名。只关心抽象方法的参数列表和返回值类型。因此为了让我们使用Lambda表达式更加的方 法,在JDK中提供了大量常用的函数式接口
例如假如自己封装一个函数式接口:
public static void main(String[] args) {
fun1((arr)->{
int sum = 0 ;
for (int i : arr) {
sum += i;
}
return sum;
});
}
public static void fun1(Operator operator){
int[] arr = {1,2,3,4};
int sum = operator.getSum(arr);
System.out.println("sum = " + sum);
}
/**
* 函数式接口
*/
@FunctionalInterface
interface Operator{
int getSum(int[] arr);
}
函数式接口介绍
在JDK中帮我们提供的有函数式接口,主要是在 java.util.function 包中。
Supplier
无参有返回值的接口,对于的Lambda表达式需要提供一个返回数据的类型。
@FunctionalInterface
public interface Supplier<T> {
/**
* Gets a result.
*
* @return a result
*/
T get();
}
使用
public static void main(String[] args) {
fun1(()->{
int arr[] = {22,33,55,66,44,99,10};
// 计算出数组中的最大值
Arrays.sort(arr);
return arr[arr.length-1];
});
}
private static void fun1(Supplier<Integer> supplier){
// get() 是一个无参的有返回值的 抽象方法
Integer max = supplier.get();
System.out.println("max = " + max);
}
Consumer
有参无返回值得接口,前面介绍的Supplier接口是用来生产数据的,而Consumer接口是用来消费数据的,使用的时候需要指定一个泛型来定义参数类型
@FunctionalInterface
public interface Consumer<T> {
/**
* Performs this operation on the given argument.
*
* @param t the input argument
*/
void accept(T t);
}
使用:将输入的数据统一转换为小写输出
public class ConsumerTest {
public static void main(String[] args) {
test(msg -> {
System.out.println(msg + "-> 转换为小写:" + msg.toLowerCase());
});
}
public static void test(Consumer<String> consumer){
consumer.accept("Hello World");
}
}
默认方法:andThen 如果一个方法的参数和返回值全部是Consumer类型,那么就可以实现效果,消费一个数据的时候,首先做一个操作,然后再做一个操作,实现组合,而这个方法就是Consumer接口中的default方法andThen方法
public static void main(String[] args) {
test2(msg1->{
System.out.println(msg1 + "-> 转换为小写:" + msg1.toLowerCase());
},msg2->{
System.out.println(msg2 + "-> 转换为大写:" + msg2.toUpperCase());
});
}
public static void test2(Consumer<String> c1,Consumer<String> c2){
String str = "Hello World";
//c1.accept(str); // 转小写
//c2.accept(str); // 转大写
//c1.andThen(c2).accept(str);
c2.andThen(c1).accept(str);
}
Function
有参有返回值的接口,Function接口是根据一个类型的数据得到另一个类型的数据,前者称为前置条 件,后者称为后置条件。有参数有返回值。
@FunctionalInterface
public interface Function<T, R> {
/**
* Applies this function to the given argument.
*
* @param t the function argument
* @return the function result
*/
R apply(T t);
}
使用:传递进入一个字符串返回一个数字
public static void main(String[] args) {
test(msg ->{
return Integer.parseInt(msg);
});
}
public static void test(Function<String,Integer> function){
Integer apply = function.apply("666");
System.out.println("apply = " + apply);
}
默认方法:andThen,也是用来进行组合操作
public static void main(String[] args) {
test(msg ->{
return Integer.parseInt(msg);
},msg2->{
return msg2 * 10;
});
}
public static void test(Function<String,Integer>
f1,Function<Integer,Integer> f2){
/*Integer i1 = f1.apply("666");
Integer i2 = f2.apply(i1);*/
Integer i2 = f1.andThen(f2).apply("666");
System.out.println("i2:" + i2);
}
默认的compose方法的作用顺序和andThen方法刚好相反
Predicate
有参且返回值为Boolean的接口
@FunctionalInterface
public interface Predicate<T> {
/**
* Evaluates this predicate on the given argument.
*
* @param t the input argument
* @return {@code true} if the input argument matches the predicate,
* otherwise {@code false}
*/
boolean test(T t);
}
使用:
public static void main(String[] args) {
test(msg -> {
return msg.length() > 3;
},"HelloWorld");
}
private static void test(Predicate<String> predicate,String msg){
boolean b = predicate.test(msg);
System.out.println("b:" + b);
}
在Predicate中的默认方法提供了逻辑关系操作 and or negate isEquals方法
public static void main(String[] args) {
test(msg1 -> {
return msg1.contains("H");
},msg2 -> {
return msg2.contains("W");
});
}
private static void test(Predicate<String> p1,Predicate<String> p2){
/*boolean b1 = predicate.test(msg);
boolean b2 = predicate.test("Hello");*/
// b1 包含H b2 包含W
// p1 包含H 同时 p2 包含W
boolean bb1 = p1.and(p2).test("Hello");
// p1 包含H 或者 p2 包含W
boolean bb2 = p1.or(p2).test("Hello");
// p1 不包含H
boolean bb3 = p1.negate().test("Hello");
System.out.println(bb1); // FALSE
System.out.println(bb2); // TRUE
System.out.println(bb3); // FALSE
}
方法引用
lambda表达式冗余
在使用Lambda表达式的时候,也会出现代码冗余的情况,比如:用Lambda表达式求一个数组的和
public static void main(String[] args) {
printMax(a->{
// Lambda表达式中的代码和 getTotal中的代码冗余了
int sum = 0;
for (int i : a) {
sum += i;
}
System.out.println("数组之和:" + sum);
});
}
/**
* 求数组中的所有元素的和
* @param a
*/
public void getTotal(int a[]){
int sum = 0;
for (int i : a) {
sum += i;
}
System.out.println("数组之和:" + sum);
}
private static void printMax(Consumer<int[]> consumer){
int[] a= {10,20,30,40,50,60};
consumer.accept(a);
}
因为在Lambda表达式中要执行的代码和我们另一个方法中的代码是一样的,这时就没有必要重写一 份逻辑了,这时我们就可以“引用”重复代码
public class FunctionRefTest02 {
public static void main(String[] args) {
// :: 方法引用 也是JDK8中的新的语法
printMax(FunctionRefTest02::getTotal);
}
/**
* 求数组中的所有元素的和
* @param a
*/
public static void getTotal(int a[]){
int sum = 0;
for (int i : a) {
sum += i;
}
System.out.println("数组之和:" + sum);
}
private static void printMax(Consumer<int[]> consumer){
int[] a= {10,20,30,40,50,60};
consumer.accept(a);
}
}
:: 方法引用 也是JDK8中的新的语法
方法引用的格式
符号表示: :: 符号说明:双冒号为方法引用运算符,而它所在的表达式被称为 方法引用 应用场景:如果Lambda表达式所要实现的方案,已经有其他方法存在相同的方案,那么则可以使用方 法引用。 常见的引用方式: 方法引用在JDK8中使用是相当灵活的,有以下几种形式:
-
instanceName::methodName 对象::方法名
-
ClassName::staticMethodName 类名::静态方法
-
ClassName::methodName 类名::普通方法
-
ClassName::new 类名::new 调用的构造器
-
TypeName[]::new String[]::new 调用数组的构造器
对象名::方法名
这是最常见的一种用法。如果一个类中的已经存在了一个成员方法,则可以通过对象名引用成员方法
public static void main(String[] args) {
Date now = new Date();
Supplier<Long> supplier = ()->{return now.getTime();};
System.out.println(supplier.get());
// 然后我们通过 方法引用 的方式来处理
Supplier<Long> supplier1 = now::getTime;
System.out.println(supplier1.get());
}
方法引用的注意事项:
- 被引用的方法,参数要和接口中的抽象方法的参数一样
- 当接口抽象方法有返回值时,被引用的方法也必须有返回值
类名::静态方法名
也是比较常用的方式:
public static void main(String[] args) {
Supplier<Long> supplier1 = ()->{
return System.currentTimeMillis();
};
System.out.println(supplier1.get());
// 通过 方法引用 来实现
Supplier<Long> supplier2 = System::currentTimeMillis;
System.out.println(supplier2.get());
}
类名::引用实例方法
Java面向对象中,类名只能调用静态方法,类名引用实例方法是用前提的,实际上是拿第一个参数作 为方法的调用者
public static void main(String[] args) {
Function<String,Integer> function = (s)->{
return s.length();
};
System.out.println(function.apply("hello"));
// 通过方法引用来实现
Function<String,Integer> function1 = String::length;
System.out.println(function1.apply("hahahaha"));
}
类名::构造器
由于构造器的名称和类名完全一致,所以构造器引用使用 ::new 的格式使用,
public static void main(String[] args) {
Supplier<Person> sup = ()->{return new Person();};
System.out.println(sup.get());
// 然后通过 方法引用来实现
Supplier<Person> sup1 = Person::new;
System.out.println(sup1.get());
}
数组::构造器
数组是怎么构造出来的呢?
public static void main(String[] args) {
Function<Integer,String[]> fun1 = (len)->{
return new String[len];
};
String[] a1 = fun1.apply(3);
System.out.println("数组的长度是:" + a1.length);
// 方法引用 的方式来调用数组的构造器
Function<Integer,String[]> fun2 = String[]::new;
String[] a2 = fun2.apply(5);
System.out.println("数组的长度是:" + a2.length);
}
小结:方法引用是对Lambda表达式符合特定情况下的一种缩写方式,它使得我们的Lambda表达式更加的精简,也可以理解为lambda表达式的缩写形式,不过要注意的是方法引用只能引用已经存在的方法。