负载均衡
1.概念
负载均衡(Load Balancing):调度后方的多台机器,以统一的接口对外提供服务,承担此职责的技术组件被称为“负载均衡”。
2.背景
在互联网时代的早期,网站流量还相对较小,并且业务也比较简单,单台服务器便有可能满足访问需要,但时至今日,互联网应用也好,企业级应用也好,一般实际用于生产的系统,几乎都离不开集群部署了。信息系统不论是采用单体架构多副本部署还是微服务架构,不论是为了实现高可用还是为了获得高性能,都需要利用到多台机器来扩展服务能力,希望用户的请求不管连接到哪台机器上,都能得到相同的处理。另一方面,如何构建和调度服务集群这事情,又必须对用户一侧保持足够的透明,即使请求背后是由一千台、一万台机器来共同响应的,也绝非用户所关心的事情,用户需记住的只有一个域名地址而已。调度后方的多台机器,以统一的接口对外提供服务,承担此职责的技术组件被称为“负载均衡”(Load Balancing)。
真正大型系统的负载均衡过程往往是多级的。譬如,在各地建有多个机房,或机房有不同网络链路入口的大型互联网站,会从 DNS 解析开始,通过“域名” → “CNAME” → “负载调度服务” → “就近的数据中心入口”的路径,先将来访地用户根据 IP 地址(或者其他条件)分配到一个合适的数据中心中,然后才到稍后将要讨论的各式负载均衡。在 DNS 层面的负载均衡与前面介绍的 DNS 智能线路、内容分发网络等,在工作原理上是类似的,其差别只是数据中心能提供的不仅有缓存,而是全方位的服务能力。
3.四层与层负载均衡
无论在网关内部建立了多少级的负载均衡,从形式上来说都可以分为两种:四层负载均衡和七层负载均衡。在详细介绍它们是什么以及如何工作之前,我们先来建立两个总体的、概念性的印象。
- 四层负载均衡的优势是性能高,七层负载均衡的优势是功能强。
- 做多级混合负载均衡,通常应是低层的负载均衡在前,高层的负载均衡在后。
我们所说的“四层”、“七层”,指的是经典的OSI 七层模型中第四层传输层和第七层应用层,下表是来自于维基百科上对 OSI 七层模型的介绍(笔者做了简单的中文翻译),这部分属于网络基础知识,这里就不多解释了。后面我们会多次使用到这张表,如你对网络知识并不是特别了解的,可通过维基百科上的连接获得进一步的资料。
层 | 数据单元 | 功能 | |
---|---|---|---|
7 | 应用层 Application Layer | 数据 Data | 提供为应用软件提供服务的接口,用于与其他应用软件之间的通信。典型协议:HTTP、HTTPS、FTP、Telnet、SSH、SMTP、POP3 等 |
6 | 表达层 Presentation Layer | 数据 Data | 把数据转换为能与接收者的系统格式兼容并适合传输的格式。 |
5 | 会话层 Session Layer | 数据 Data | 负责在数据传输中设置和维护计算机网络中两台计算机之间的通信连接。 |
4 | 传输层 Transport Layer | 数据段 Segments | 把传输表头加至数据以形成数据包。传输表头包含了所使用的协议等发送信息。典型协议:TCP、UDP、RDP、SCTP、FCP 等 |
3 | 网络层 Network Layer | 数据包 Packets | 决定数据的传输路径选择和转发,将网络表头附加至数据段后以形成报文(即数据包)。典型协议:IPv4/IPv6、IGMP、ICMP、EGP、RIP 等 |
2 | 数据链路层 Data Link Layer | 数据帧 Frame | 负责点对点的网络寻址、错误侦测和纠错。当表头和表尾被附加至数据包后,就形成数据帧(Frame)。典型协议:WiFi(802.11)、Ethernet(802.3)、PPP 等。 |
1 | 物理层 Physical Layer | 比特流 Bit | 在物理网络上传送数据帧,它负责管理电脑通信设备和网络媒体之间的互通。包括了针脚、电压、线缆规范、集线器、中继器、网卡、主机接口卡等。 |
现在所说的“四层负载均衡”其实是多种均衡器工作模式的统称,“四层”的意思是说这些工作模式的共同特点是维持着同一个 TCP 连接,而不是说它只工作在第四层。事实上,这些模式主要都是工作在二层(数据链路层,改写 MAC 地址)和三层(网络层,改写 IP 地址)上,单纯只处理第四层(传输层,可以改写 TCP、UDP 等协议的内容和端口)的数据无法做到负载均衡的转发,因为 OSI 的下三层是媒体层(Media Layers),上四层是主机层(Host Layers),既然流量都已经到达目标主机上了,也就谈不上什么流量转发,最多只能做代理了。但出于习惯和方便,现在几乎所有的资料都把它们统称为四层负载均衡。
4.数据链路层负载均衡
参考上面 OSI 模型的表格,数据链路层传输的内容是数据帧(Frame),譬如常见的以太网帧、ADSL 宽带的 PPP 帧等。以太网帧,按照IEEE 802.3标准,最典型的 1500 Bytes MTU 的以太网帧结构如下表所示。
数据项 | 取值 |
---|---|
前导码 | 10101010 7 Bytes |
帧开始符 | 10101011 1 Byte |
MAC 目标地址 | 6 Bytes |
MAC 源地址 | 6 Bytes |
802.1Q标签(可选) | 4 Bytes |
以太类型 | 2 Bytes |
有效负载 | 1500 Bytes |
冗余校验 | 4 Bytes |
帧间距 | 12 Bytes |
帧结构中其他数据项的含义在本节中可以暂时不去理会,只需注意到“MAC 目标地址”和“MAC 源地址”两项即可。每一块网卡都有独立的 MAC 地址,以太帧上这两个地址告诉了交换机,此帧应该是从连接在交换机上的哪个端口的网卡发出,送至哪块网卡的。
数据链路层负载均衡所做的工作,是修改请求的数据帧中的 MAC 目标地址,让用户原本是发送给负载均衡器的请求的数据帧,被二层交换机根据新的 MAC 目标地址转发到服务器集群中对应的服务器(后文称为“真实服务器”,Real Server)的网卡上,这样真实服务器就获得了一个原本目标并不是发送给它的数据帧。
由于二层负载均衡器在转发请求过程中只修改了帧的 MAC 目标地址,不涉及更上层协议(没有修改 Payload 的数据),所以在更上层(第三层)看来,所有数据都是未曾被改变过的。由于第三层的数据包,即 IP 数据包中包含了源(客户端)和目标(均衡器)的 IP 地址,只有真实服务器保证自己的 IP 地址与数据包中的目标 IP 地址一致,这个数据包才能被正确处理。因此,使用这种负载均衡模式时,需要把真实物理服务器集群所有机器的虚拟 IP 地址(Virtual IP Address,VIP)配置成与负载均衡器的虚拟 IP 一样,这样经均衡器转发后的数据包就能在真实服务器中顺利地使用。也正是因为实际处理请求的真实物理服务器 IP 和数据请求中的目的 IP 是一致的,所以响应结果就不再需要通过负载均衡服务器进行地址交换,可将响应结果的数据包直接从真实服务器返回给用户的客户端,避免负载均衡器网卡带宽成为瓶颈,因此数据链路层的负载均衡效率是相当高的。整个请求到响应的过程如图 所示。
上述只有请求经过负载均衡器,而服务的响应无须从负载均衡器原路返回的工作模式,整个请求、转发、响应的链路形成一个“三角关系”,所以这种负载均衡模式也常被很形象地称为“三角传输模式”(Direct Server Return,DSR),也有叫“单臂模式”(Single Legged Mode)或者“直接路由”(Direct Routing)。
虽然数据链路层负载均衡效率很高,但它并不能适用于所有的场合,除了那些需要感知应用层协议信息的负载均衡场景它无法胜任外(所有的四层负载均衡器都无法胜任,将在后续介绍七层均衡器时一并解释),它在网络一侧受到的约束也很大。二层负载均衡器直接改写目标 MAC 地址的工作原理决定了它与真实的服务器的通信必须是二层可达的,通俗地说就是必须位于同一个子网当中,无法跨 VLAN。优势(效率高)和劣势(不能跨子网)共同决定了数据链路层负载均衡最适合用来做数据中心的第一级均衡设备,用来连接其他的下级负载均衡器。
5.网络层负载均衡
根据 OSI 七层模型,在第三层网络层传输的单位是分组数据包(Packets),这是一种在分组交换网络(Packet Switching Network,PSN)中传输的结构化数据单位。以 IP 协议为例,一个 IP 数据包由 Headers 和 Payload 两部分组成, Headers 长度最大为 60 Bytes,其中包括了 20 Bytes 的固定数据和最长不超过 40 Bytes 的可选的额外设置组成。按照 IPv4 标准,一个典型的分组数据包的 Headers 部分具有如下表所示的结构。
长度 | 存储信息 |
---|---|
0-4 Bytes | 版本号(4 Bits)、首部长度(4 Bits)、分区类型(8 Bits)、总长度(16 Bits) |
5-8 Bytes | 报文计数标识(16 Bits)、标志位(4 Bits)、片偏移(12 Bits) |
9-12 Bytes | TTL 生存时间(8 Bits)、上层协议代号(8 Bits)、首部校验和(16 Bits) |
13-16 Bytes | 源地址(32 Bits) |
17-20 Bytes | 目标地址(32 Bits) |
20-60 Bytes | 可选字段和空白填充 |
IP 分组数据包的 Headers 带有源和目标的 IP 地址即可。源和目标 IP 地址代表了数据是从分组交换网络中哪台机器发送到哪台机器的,我们可以沿用与二层改写 MAC 地址相似的思路,通过改变这里面的 IP 地址来实现数据包的转发。具体有两种常见的修改方式。
第一种是保持原来的数据包不变,新创建一个数据包,把原来数据包的 Headers 和 Payload 整体作为另一个新的数据包的 Payload,在这个新数据包的 Headers 中写入真实服务器的 IP 作为目标地址,然后把它发送出去。经过三层交换机的转发,真实服务器收到数据包后,必须在接收入口处设计一个针对性的拆包机制,把由负载均衡器自动添加的那层 Headers 扔掉,还原出原来的数据包来进行使用。这样,真实服务器就同样拿到了一个原本不是发给它(目标 IP 不是它)的数据包,达到了流量转发的目的。那时候还没有流行起“禁止套娃”的梗,所以设计者给这种“套娃式”的传输起名叫做“IP 隧道”(IP Tunnel)传输,也还是相当的形象。
尽管因为要封装新的数据包,IP 隧道的转发模式比起直接路由模式效率会有所下降,但由于并没有修改原有数据包中的任何信息,所以 IP 隧道的转发模式仍然具备三角传输的特性,即负载均衡器转发来的请求,可以由真实服务器去直接应答,无须在经过均衡器原路返回。而且由于 IP 隧道工作在网络层,所以可以跨越 VLAN,因此摆脱了直接路由模式中网络侧的约束。此模式从请求到响应的过程如下图所示。
而这种转发方式也有缺点。第一个缺点是它要求真实服务器必须支持“IP 隧道协议”(IP Encapsulation),就是它得学会自己拆包扔掉一层 Headers,这个其实并不是什么大问题,现在几乎所有的 Linux 系统都支持 IP 隧道协议。另外一个缺点是这种模式仍必须通过专门的配置,必须保证所有的真实服务器与均衡器有着相同的虚拟 IP 地址,因为回复该数据包时,需要使用这个虚拟 IP 作为响应数据包的源地址,这样客户端收到这个数据包时才能正确解析。这个限制就相对麻烦一些,它与“透明”的原则冲突,需由系统管理员介入。
而且,对服务器进行虚拟 IP 的配置并不是在任何情况下都可行的,尤其是当有好几个服务共用一台物理服务器的时候,此时就必须考虑第二种修改方式——改变目标数据包:直接把数据包 Headers 中的目标地址改掉,修改后原本由用户发给均衡器的数据包,也会被三层交换机转发送到真实服务器的网卡上,而且因为没有经过 IP 隧道的额外包装,也就无须再拆包了。但问题是这种模式是通过修改目标 IP 地址才到达真实服务器的,如果真实服务器直接将应答包返回客户端的话,这个应答数据包的源 IP 是真实服务器的 IP,也即均衡器修改以后的 IP 地址,客户端不可能认识该 IP,自然就无法再正常处理这个应答了。因此,只能让应答流量继续回到负载均衡,由负载均衡把应答包的源 IP 改回自己的 IP,再发给客户端,这样才能保证客户端与真实服务器之间的正常通信。如果你对网络知识有些了解的话,肯定会觉得这种处理似曾相识,这不就是在家里、公司、学校上网时,由一台路由器带着一群内网机器上网的“网络地址转换”(Network Address Translation,NAT)操作吗?这种负载均衡的模式的确被称为 NAT 模式,此时,负载均衡器就是充当了家里、公司、学校的上网路由器的作用。NAT 模式的负载均衡器运维起来十分简单,只要机器将自己的网关地址设置为均衡器地址,就无须再进行任何额外设置了。此模式从请求到响应的过程如下图所示。
在流量压力比较大的时候,NAT 模式的负载均衡会带来较大的性能损失,比起直接路由和 IP 隧道模式,甚至会出现数量级上的下降。这点是显而易见的,由负载均衡器代表整个服务集群来进行应答,各个服务器的响应数据都会互相挣抢均衡器的出口带宽,这就好比在家里用 NAT 上网的话,如果有人在下载,你打游戏可能就会觉得卡顿是一个道理,此时整个系统的瓶颈很容易就出现在负载均衡器上。
还有一种更加彻底的 NAT 模式:即均衡器在转发时,不仅修改目标 IP 地址,连源 IP 地址也一起改了,源地址就改成均衡器自己的 IP,称作 Source NAT(SNAT)。这样做的好处是真实服务器无须配置网关就能够让应答流量经过正常的三层路由回到负载均衡器上,做到了彻底的透明。但是缺点是由于做了 SNAT,真实服务器处理请求时就无法拿到客户端的 IP 地址了,从真实服务器的视角看来,所有的流量都来自于负载均衡器,这样有一些需要根据目标 IP 进行控制的业务逻辑就无法进行。
6.应用层负载均衡
上面介绍的四层负载均衡工作模式都属于“转发”,即直接将承载着 TCP 报文的底层数据格式(IP 数据包或以太网帧)转发到真实服务器上,此时客户端到响应请求的真实服务器维持着同一条 TCP 通道。但工作在四层之后的负载均衡模式就无法再进行转发了,只能进行代理,此时真实服务器、负载均衡器、客户端三者之间由两条独立的 TCP 通道来维持通信,转发与代理的区别如下图所示。
图 4-11 转发与代理
“代理”这个词,根据“哪一方能感知到”的原则,可以分为“正向代理”、“反向代理”和“透明代理”三类。正向代理就是我们通常简称的代理,指在客户端设置的、代表客户端与服务器通信的代理服务,它是客户端可知,而对服务器透明的。反向代理是指在设置在服务器这一侧,代表真实服务器来与客户端通信的代理服务,此时它对客户端来说是透明的。至于透明代理是指对双方都透明的,配置在网络中间设备上的代理服务,譬如,架设在路由器上的透明翻墙代理。
根据以上定义,很显然,七层负载均衡器它就属于反向代理中的一种,如果只论网络性能,七层均衡器肯定是无论如何比不过四层均衡器的,它比四层均衡器至少多一轮 TCP 握手,有着跟 NAT 转发模式一样的带宽问题,而且通常要耗费更多的 CPU,因为可用的解析规则远比四层丰富。所以如果用七层均衡器去做下载站、视频站这种流量应用是不合适的,起码不能作为第一级均衡器。但是,如果网站的性能瓶颈并不在于网络性能,要论整个服务集群对外所体现出来的服务性能,七层均衡器就有它的用武之地了。这里面七层均衡器的底气就是来源于它工作在应用层,可以感知应用层通信的具体内容,往往能够做出更明智的决策,玩出更多的花样来。
举个生活中的例子,四层均衡器就像银行的自助排号机,转发效率高且不知疲倦,每一个达到银行的客户根据排号机的顺序,选择对应的窗口接受服务;而七层均衡器就像银行大堂经理,他会先确认客户需要办理的业务,再安排排号。这样办理理财、存取款等业务的客户,会根据银行内部资源得到统一协调处理,加快客户业务办理流程,有一些无须柜台办理的业务,由大堂经理直接就可以解决了,譬如,反向代理的就能够实现静态资源缓存,对于静态资源的请求就可以在反向代理上直接返回,无须转发到真实服务器。
代理的工作模式相信大家应该是比较熟悉的,这里不再展开,只是简单列举了一些七层代理可以实现的功能,以便读者对它“功能强大”有个直观的感受。
- 前面介绍 CDN 应用时,所有 CDN 可以做的缓存方面的工作(就是除去 CDN 根据物理位置就近返回这种优化链路的工作外),七层均衡器全都可以实现,譬如静态资源缓存、协议升级、安全防护、访问控制,等等。
- 七层均衡器可以实现更智能化的路由。譬如,根据 Session 路由,以实现亲和性的集群;根据 URL 路由,实现专职化服务(此时就相当于网关的职责);甚至根据用户身份路由,实现对部分用户的特殊服务(如某些站点的贵宾服务器),等等。
- 某些安全攻击可以由七层均衡器来抵御,譬如一种常见的 DDoS 手段是 SYN Flood 攻击,即攻击者控制众多客户端,使用虚假 IP 地址对同一目标大量发送 SYN 报文。从技术原理上看,由于四层均衡器无法感知上层协议的内容,这些 SYN 攻击都会被转发到后端的真实服务器上;而七层均衡器下这些 SYN 攻击自然在负载均衡设备上就被过滤掉,不会影响到后面服务器的正常运行。类似地,可以在七层均衡器上设定多种策略,譬如过滤特定报文,以防御如 SQL 注入等应用层面的特定攻击手段。
- 很多微服务架构的系统中,链路治理措施都需要在七层中进行,譬如服务降级、熔断、异常注入,等等。譬如,一台服务器只有出现物理层面或者系统层面的故障,导致无法应答 TCP 请求才能被四层均衡器所感知,进而剔除出服务集群,如果一台服务器能够应答,只是一直在报 500 错,那四层均衡器对此是完全无能为力的,只能由七层均衡器来解决。
7.均衡策略与实现
负载均衡的两大职责是“选择谁来处理用户请求”和“将用户请求转发过去”。到此我们仅介绍了后者,即请求的转发或代理过程。前者是指均衡器所采取的均衡策略,由于这一块涉及的均衡算法太多,无法逐一展开,从功能和应用的角度去介绍一些常见的均衡策略。1. 轮循均衡(Round Robin):每一次来自网络的请求轮流分配给内部中的服务器,从 1 至 N 然后重新开始。此种均衡算法适合于集群中的所有服务器都有相同的软硬件配置并且平均服务请求相对均衡的情况。
- 权重轮循均衡(Weighted Round Robin):根据服务器的不同处理能力,给每个服务器分配不同的权值,使其能够接受相应权值数的服务请求。譬如:服务器 A 的权值被设计成 1,B 的权值是 3,C 的权值是 6,则服务器 A、B、C 将分别接收到 10%、30%、60%的服务请求。此种均衡算法能确保高性能的服务器得到更多的使用率,避免低性能的服务器负载过重。
- 随机均衡(Random):把来自客户端的请求随机分配给内部中的多个服务器,在数据足够大的场景下能达到相对均衡的分布。
- 权重随机均衡(Weighted Random):此种均衡算法类似于权重轮循算法,不过在分配处理请求时是个随机选择的过程。
- 一致性哈希均衡(Consistency Hash):根据请求中某一些数据(可以是 MAC、IP 地址,也可以是更上层协议中的某些参数信息)作为特征值来计算需要落在的节点上,算法一般会保证同一个特征值每次都一定落在相同的服务器上。一致性的意思是保证当服务集群某个真实服务器出现故障,只影响该服务器的哈希,而不会导致整个服务集群的哈希键值重新分布。
- 响应速度均衡(Response Time):负载均衡设备对内部各服务器发出一个探测请求(例如 Ping),然后根据内部中各服务器对探测请求的最快响应时间来决定哪一台服务器来响应客户端的服务请求。此种均衡算法能较好的反映服务器的当前运行状态,但这最快响应时间仅仅指的是负载均衡设备与服务器间的最快响应时间,而不是客户端与服务器间的最快响应时间。
- 最少连接数均衡(Least Connection):客户端的每一次请求服务在服务器停留的时间可能会有较大的差异,随着工作时间加长,如果采用简单的轮循或随机均衡算法,每一台服务器上的连接进程可能会产生极大的不平衡,并没有达到真正的负载均衡。最少连接数均衡算法对内部中需负载的每一台服务器都有一个数据记录,记录当前该服务器正在处理的连接数量,当有新的服务连接请求时,将把当前请求分配给连接数最少的服务器,使均衡更加符合实际情况,负载更加均衡。此种均衡策略适合长时处理的请求服务,如 FTP 传输。
- ………… 从实现角度来看,负载均衡器的实现分为“软件均衡器”和“硬件均衡器”两类。在软件均衡器方面,又分为直接建设在操作系统内核的均衡器和应用程序形式的均衡器两种。前者的代表是 LVS(Linux Virtual Server),后者的代表有 Nginx、HAProxy、KeepAlived 等,前者性能会更好,因为无须在内核空间和应用空间中来回复制数据包;而后者的优势是选择广泛,使用方便,功能不受限于内核版本。 在硬件均衡器方面,往往会直接采用应用专用集成电路(Application Specific Integrated Circuit,ASIC)来实现,有专用处理芯片的支持,避免操作系统层面的损耗,得以达到最高的性能。这类的代表就是著名的 F5 和 A10 公司的负载均衡产品。
8.客户端负载均衡
8.1.案例
假设你身处广东,要上 Bookstore 购买一本书,在程序业务逻辑里,购书其中一个关键步骤是调用商品出库服务来完成货物准备,在代码中该服务的调用请求为:https://warehouse:8080/restful/stockpile/3
Bookstore 是个大书店,在北京、武汉、广州的机房均部署有服务集群,你的购物请求从浏览器发出后,服务端按顺序发生了如下事件:
- 首先是将
warehouse
这个服务名称转换为恰当的服务地址,“恰当”是个宽泛的描述,一种典型的“恰当”便是因调用请求来自广东,优先分配给传输距离最短的广州机房来应答。其实按常理来说这次出库服务的调用应该是集群内的流量,而不是用户浏览器直接发出的请求,所以尽管结果没有不同,但更接近实际的的情况是用户访问首页时已经被 DNS 服务器分配到了广州机房,请求出库服务时,应优先选择同机房的服务进行调用,此时请求变为:https://guangzhou-ip-wan:8080/restful/stockpile/3 - 广州机房的服务网关将该请求与配置中的特征进行比对,由 URL 中的
/restful/stockpile/**
得知该请求访问的是商品出库服务,因此,将请求的 IP 地址转换为内网中 warehouse 服务集群的入口地址:https://warehouse-gz-lan:8080/restful/stockpile/3 - 集群中部署有多个 warehouse 服务,收到调用请求后,负载均衡器要在多个服务中根据某种标准——可能是随机挑选,也可能是按顺序轮询,抑或是选择此前调用次数最少那个,等等。根据均衡策略找出要响应本次调用的服务,称其为
warehouse-gz-lan-node1
,https://warehouse-gz-lan-node1:8080/restful/stockpile/3 - 如果访问
warehouse-gz-lan-node1
服务,没有返回需要的结果,而是抛出 500 错。 - 根据预置的故障转移(Failover)策略,重试将调用分配给能够提供该服务的其他节点,称其为
warehouse-gz-lan-node2
, https://warehouse-gz-lan-node2:8080/restful/stockpile/3 warehouse-gz-lan-node2
服务返回商品出库成功。 200 OK
以上过程从整体上看,步骤 1、2、3、5,分别对应了服务发现、网关路由、负载均衡和服务容错,在细节上看,其中部分职责又是有交叉的,并不是服务注册中心就只关心服务发现,网关只关心路由,均衡器只关心流量负载均衡。譬如,步骤 1 服务发现的过程中,“根据请求来源的物理位置来分配机房”这个操作本质上是根据请求中的特征(地理位置)进行流量分发,这实际是一种路由行为。实际系统中,在 DNS 服务器(DNS 智能线路)、服务注册中心(如 Eureka 等框架中的 Region、Zone 概念)或者负载均衡器(可用区负载均衡,如 AWS 的 NLB,或 Envoy 的 Region、Zone、Sub-zone)中都有可能实现。
此外,你是否感觉到以上网络调用过程似乎过于烦琐了,一个从广州机房内网发出的服务请求,绕到了网络边缘的网关、负载均衡器这些设施上,再被分配回内网中另外一个服务去响应,不仅消耗了带宽,降低了性能,也增加了链路上的风险和运维的复杂度。可是,如果流量不经过这些设施,它们相应的职责就无法发挥作用,譬如不经过负载均衡器的话,连请求应该具体交给哪一个服务去处理都无法确定,这有办法简化吗?
8.2.客户端负载均衡器
对于任何一个大型系统,负载均衡器都是必不可少的设施。以前,负载均衡器大多只部署在整个服务集群的前端,将用户的请求分流到各个服务进行处理,这种经典的部署形式现在被称为集中式的负载均衡。随着微服务日渐流行,服务集群的收到的请求来源不再局限于外部,越来越多的访问请求是由集群内部的某个服务发起,由集群内部的另一个服务进行响应的,对于这类流量的负载均衡,既有的方案依然是可行的,但针对内部流量的特点,直接在服务集群内部消化掉,肯定有更合理更受开发者青睐的办法。由此一种全新的、独立位于每个服务前端的、分散式的负载均衡方式正逐渐变得流行起来,这就是本节我们要讨论的主角:客户端负载均衡器(Client-Side Load Balancer),如下图所示:
客户端负载均衡器的理念提出以后,此前的集中式负载均衡器也有了一个方便与它对比的名字“服务端负载均衡器”(Server-Side Load Balancer)。从图中能够清晰地看到客户端负载均衡器的特点,也是它与服务端负载均衡器的关键差别所在:客户端均衡器是和服务实例一一对应的,而且与服务实例并存于同一个进程之内。这个特点能为它带来很多好处,如:
- 均衡器与服务之间信息交换是进程内的方法调用,不存在任何额外的网络开销。
- 不依赖集群边缘的设施,所有内部流量都仅在服务集群的内部循环,避免了出现前文那样,集群内部流量要“绕场一周”的尴尬局面。
- 分散式的均衡器意味着天然避免了集中式的单点问题,它的带宽资源将不会像集中式均衡器那样敏感,这在以七层均衡器为主流、不能通过 IP 隧道和三角传输这样方式节省带宽的微服务环境中显得更具优势。
- 客户端均衡器要更加灵活,能够针对每一个服务实例单独设置均衡策略等参数,访问某个服务,是不是需要具备亲和性,选择服务的策略是随机、轮询、加权还是最小连接等等,都可以单独设置而不影响其它服务。
- ……
但是,客户端均衡器也不是银弹,它得到上述诸多好处的同时,缺点同样也是不少的:
- 它与服务运行于同一个进程之内,意味着它的选型受到服务所使用的编程语言的限制,譬如用 Golang 开发的微服务就不太可能搭配 Spring Cloud Load Balancer 来使用,要为每种语言都实现对应的能够支持复杂网络情况的均衡器是非常难的。客户端均衡器的这个缺陷有违于微服务中技术异构不应受到限制的原则。
- 从个体服务来看,由于是共用一个进程,均衡器的稳定性会直接影响整个服务进程的稳定性,消耗的 CPU、内存等资源也同样影响到服务的可用资源。从集群整体来看,在服务数量达成千乃至上万规模时,客户端均衡器消耗的资源总量是相当可观的。
- 由于请求的来源可能是来自集群中任意一个服务节点,而不再是统一来自集中式均衡器,这就使得内部网络安全和信任关系变得复杂,当攻破任何一个服务时,更容易通过该服务突破集群中的其他部分。
- 服务集群的拓扑关系是动态的,每一个客户端均衡器必须持续跟踪其他服务的健康状况,以实现上线新服务、下线旧服务、自动剔除失败的服务、自动重连恢复的服务等均衡器必须具备的功能。由于这些操作都需要通过访问服务注册中心来完成,数量庞大的客户端均衡器一直持续轮询服务注册中心,也会为它带来不小的负担。
- ……
8.3.代理负载均衡器
在 Java 领域,客户端均衡器中最具代表性的产品是 Netflix Ribbon 和 Spring Cloud Load Balancer,随着微服务的流行,它们在 Java 微服务中已积聚了相当可观的使用者。直到最近两三年,服务网格(Service Mesh)开始逐渐盛行,另外一种被称为“代理客户端负载均衡器”(Proxy Client-Side Load Balancer,后文简称“代理均衡器”)的客户端均衡器变体形式开始引起不同编程语言的微服务开发者共同关注,它解决了此前客户端均衡器的大多数缺陷。代理均衡器对此前的客户端负载均衡器的改进是将原本嵌入在服务进程中的均衡器提取出来,作为一个进程之外,同一 Pod 之内的特殊服务,放到边车代理中去实现,它的流量关系如下图所示。 虽然代理均衡器与服务实例不再是进程内通信,而是通过网络协议栈进行数据交换的,数据要经过操作系统的协议栈,要进行打包拆包、计算校验和、维护序列号等网络数据的收发步骤,流量比起之前的客户端均衡器确实多增加了一系列处理步骤。不过,Kubernetes 严格保证了同一个 Pod 中的容器不会跨越不同的节点,这些容器共享着同一个网络名称空间,因此代理均衡器与服务实例的交互,实质上是对本机回环设备的访问,仍然要比真正的网络交互高效且稳定得多。代理均衡器付出的代价较小,但从服务进程中分离出来所获得的收益却是非常显著的:1. 代理均衡器不再受编程语言的限制。发展一个支持 Java、Golang、Python 等所有微服务应用服务的通用的代理均衡器具有很高的性价比。集中不同编程语言的使用者的力量,更容易打造出能面对复杂网络情况的、高效健壮的均衡器。即使退一步说,独立于服务进程的均衡器也不会由于自身的稳定性影响到服务进程的稳定。
- 在服务拓扑感知方面代理均衡器也要更有优势。由于边车代理接受控制平面的统一管理,当服务节点拓扑关系发生变化时,控制平面就会主动向边车代理发送更新服务清单的控制指令,这避免了此前客户端均衡器必须长期主动轮询服务注册中心所造成的浪费。
- 在安全性、可观测性上,由于边车代理都是一致的实现,有利于在服务间建立双向 TLS 通信,也有利于对整个调用链路给出更详细的统计信息。
- …… 总体而言,边车代理这种通过同一个 Pod 的独立容器实现的负载均衡器是目前处理微服务集群内部流量最理想的方式,只是服务网格本身仍是初生事物,还不足够成熟,对操作系统、网络和运维方面的知识要求也较高,但有理由相信随着时间的推移,未来这将会是微服务的主流通信方式。
8.4.地域与区域
借助前文已经铺设好的上下文场景,再谈一个与负载均衡相关,但又不仅仅应用于负载均衡的概念:地域与区域。你是否有注意到在微服务相关的许多设施中,都带有着 Region、Zone 参数,如前文中提到过的服务注册中心 Eureka 的 Region、Zone、边车代理 Envoy 中的 Region、Zone、Sub-zone,如果你有云计算 IaaS 的使用经历,也会发现几乎所有云计算设备都有类似的概念。Region 和 Zone 是公有云计算先驱亚马逊 AWS提出的概念,它们的含义是指:1. Region 是地域的意思,譬如华北、东北、华东、华南,这些都是地域范围。面向全球或全国的大型系统的服务集群往往会部署在多个不同地域,之前的案例场景,大型系统就是通过不同地域的机房来缩短用户与服务器之间的物理距离,提升响应速度,对于小型系统,地域一般就只在异地容灾时才会涉及到。需要注意,不同地域之间是没有内网连接的,所有流量都只能经过公众互联网相连,如果微服务的流量跨越了地域,实际就跟调用外部服务商提供的互联网服务没有任何差别了。所以集群内部流量是不会跨地域的,服务发现、负载均衡器默认也是不会支持跨地域的服务发现和负载均衡。
-
Zone 是区域的意思,它是可用区域(Availability Zones)的简称,区域指在地理上位于同一地域内,但电力和网络是互相独立的物理区域,譬如在华东的上海、杭州、苏州的不同机房就是同一个地域的几个可用区域。同一个地域的可用区域之间具有内网连接,流量不占用公网带宽,因此区域是微服务集群内流量能够触及的最大范围。但你的应用是只部署在同一区域内,还是部署到几个不同可用区域中,要取决于你是否有做异地双活的需求,以及对网络延时的容忍程度。
-
可用区域对应于城市级别的区域的范围,一些场景中仍是过大了一些,即使是同一个区域中的机房,也可能存在具有差异的不同子网络,所以在部分微服务框架也提供了 Group、Sub-zone 等做进一步的细分控制,这些参数的意思通常是加权或优先访问同一个子区域的服务,但如果子区域中没有合适的,仍然会访问到可用区域中的其他服务。
-
地域和区域原本是云计算中的概念,对于一些中小型的微服务系统,尤其是非互联网的企业信息系统,很多仍然没有使用云计算设施,只部署在某个专有机房内部,只为特定人群提供服务,这就不需要涉及地理上地域、区域的概念了。此时完全可以自己灵活延拓 Region、Zone 参数的含义,达到优化虚拟化基础设施流量的目的。譬如,将服务发现的区域设置与 Kubernetes 的标签、选择器配合,实现内部服务请求其他服务时,优先使用同一个 Node 中提供的服务进行应答,以降低真实的网络消耗。