编程人员所需具备的能力
1、读文档的能力 2、基本架构的理解:cpu架构、主机架构、操作系统架构(微机原理,编译原理,数据结构)
P7 处理多维特征的输入
import numpy as np
import torch
xy = np.loadtxt('diabetes.csv.gz', delimiter=',', dtype=mp.float(32))
x_data = torch.from_numpy(xy[:, :-1])
y_data = torch.from_numpy(xy[:, [-1]])
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
self.linear1 = torch.nn.Linear(8, 6)
self.linear2 = torch.nn.Linear(6, 4)
self.linear3 = torch.nn.Linear(4, 1)
self.sigmoid = torch.nn.Sigmoid()
def forward(self, x):
x = self.sigmoid(self.linear1(x))
x = self.sigmoid(self.linear2(x))
x = self.sigmoid(self.linear3(x))
return x
model = Model()
criterion = torch.nn.BCELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
num_epochs = 100
for epoch in range(num_epochs):
y_pred = model(x_data)
loss = criterion(y_pred, y_data)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (epoch+1) % 10 == 0:
print('epoch:{},/loss:{:.4f}'.format(epoch+1, loss.item()))