效果
项目

代码
using OpenCvSharp
using System
using System.Collections.Generic
using System.ComponentModel
using System.Data
using System.Drawing
using System.Linq
using System.Text
using System.Windows.Forms
using static System.Net.Mime.MediaTypeNames
namespace OpenVino_Yolov8_Detect
{
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent()
}
string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png"
string image_path = ""
String startupPath
DateTime dt1 = DateTime.Now
DateTime dt2 = DateTime.Now
String model_path
string classer_path
StringBuilder sb = new StringBuilder()
Core core
Mat image
private void button1_Click(object sender, EventArgs e)
{
OpenFileDialog ofd = new OpenFileDialog()
ofd.Filter = fileFilter
if (ofd.ShowDialog() != DialogResult.OK) return
pictureBox1.Image = null
image_path = ofd.FileName
pictureBox1.Image = new Bitmap(image_path)
textBox1.Text = ""
image = new Mat(image_path)
}
private void Form1_Load(object sender, EventArgs e)
{
startupPath = System.Windows.Forms.Application.StartupPath
model_path = startupPath + "\\yolov8n.onnx"
classer_path = startupPath + "\\det_lable.txt"
core = new Core(model_path, "CPU")
}
private void button2_Click(object sender, EventArgs e)
{
if (image_path == "")
{
return
}
// 配置图片数据
int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows
Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3)
Rect roi = new Rect(0, 0, image.Cols, image.Rows)
image.CopyTo(new Mat(max_image, roi))
float[] result_array = new float[8400 * 84]
float[] factors = new float[2]
factors = new float[2]
factors[0] = factors[1] = (float)(max_image_length / 640.0)
byte[] image_data = max_image.ImEncode(".bmp")
//存储byte的长度
ulong image_size = Convert.ToUInt64(image_data.Length)
// 加载推理图片数据
core.load_input_data("images", image_data, image_size, 1)
// 模型推理
dt1 = DateTime.Now
core.infer()
dt2 = DateTime.Now
// 读取推理结果
result_array = core.read_infer_result<float>("output0", 8400 * 84)
DetectionResult result_pro = new DetectionResult(classer_path, factors)
Mat result_image = result_pro.draw_result(result_pro.process_result(result_array), image.Clone())
pictureBox2.Image = new Bitmap(result_image.ToMemoryStream())
textBox1.Text = "耗时:" + (dt2 - dt1).TotalMilliseconds + "ms"
}
private void Form1_FormClosing(object sender, FormClosingEventArgs e)
{
core.delet()
}
}
}
完整Demo下载