JS 实现各种数组排序
数据结构算法中排序有很多种,常见的、不常见的,至少包含十种以上。根据它们的特性,可以大致分为两种类型:比较类排序和非比较类排序。
- 比较类排序:通过比较来决定元素间的相对次序,其时间复杂度不能突破 O(nlogn),因此也称为非线性时间比较类排序。
- 非比较类排序:不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此也称为线性时间非比较类排序。
我们通过一张图片来看看这两种分类方式分别包括哪些排序方法。
1.冒泡排序
冒泡排序是最基础的排序。冒泡排序是一次比较两个元素,如果顺序是错误的就把它们交换过来。走访数列的工作会重复地进行,直到不需要再交换,也就是说该数列已经排序完成。
var a = [1, 3, 6, 3, 23, 76, 1, 34, 222, 6, 456, 221];
function bubbleSort(array) {
const len = array.length
if (len < 2) return array
for (let i = 0; i < len; i++) {
for (let j = 0; j < i; j++) {
if (array[j] > array[i]) {
const temp = array[j]
array[j] = array[i]
array[i] = temp
}
}
}
return array
}
bubbleSort(a); // [1, 1, 3, 3, 6, 6, 23, 34, 76, 221, 222, 456]
2.快速排序
快速排序的基本思想是通过一趟排序,将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可以分别对这两部分记录继续进行排序,以达到整个序列有序。
function quickSort(array) {
const quick = arr => {
const len = arr.length
if (len < 2) return arr
let left = []
let right = []
const pivot = arr.splice(0, 1)[0]
for (let i = 0; i < len; i++) {
if (arr[i] > pivot) {
right.push(arr[i])
} else if (arr[i] <= pivot) {
left.push(arr[i])
}
}
return quick(left).concat([pivot], quick(right))
}
return quick(array)
}
上面的代码在控制台执行之后,也可以得到预期的结果。最主要的思路是从数列中挑出一个元素,称为 “基准”(pivot);然后重新排序数列,所有元素比基准值小的摆放在基准前面、比基准值大的摆在基准的后面;在这个区分搞定之后,该基准就处于数列的中间位置;然后把小于基准值元素的子数列(left)和大于基准值元素的子数列(right)递归地调用 quick 方法排序完成,这就是快排的思路。
3.选择排序
选择排序是一种简单直观的排序算法。它的工作原理是,首先将最小的元素存放在序列的起始位置,再从剩余未排序元素中继续寻找最小元素,然后放到已排序的序列后面……以此类推,直到所有元素均排序完毕。
function selectSort(arr) {
const len = arr.length
let temp
let min
for (let i = 0; i < len - 1; i++) {
min = i
for (let j = i + 1; j < len; j++) {
if (arr[j] < arr[min]) min = j
}
temp = arr[i]
arr[i] = arr[min]
arr[min] = temp
}
return arr
}
这样,通过选择排序的方法同样也可以实现数组的排序,从上面的代码中可以看出该排序是表现最稳定的排序算法之一,因为无论什么数据进去都是 O(n 平方) 的时间复杂度,所以用到它的时候,数据规模越小越好。
4.堆排序
堆排序是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质,即子结点的键值或索引总是小于(或者大于)它的父节点。堆的底层实际上就是一棵完全二叉树,可以用数组实现。
根节点最大的堆叫作大根堆,根节点最小的堆叫作小根堆,你可以根据从大到小排序或者从小到大来排序,分别建立对应的堆就可以。
function heap_sort(arr) {
var len = arr.length
var k = 0
function swap(i, j) {
var temp = arr[i]
arr[i] = arr[j]
arr[j] = temp
}
function max_heapify(start, end) {
var dad = start
var son = dad * 2 + 1
if (son >= end) return
if (son + 1 < end && arr[son] < arr[son + 1]) {
son++
}
if (arr[dad] <= arr[son]) {
swap(dad, son)
max_heapify(son, end)
}
}
for (var i = Math.floor(len / 2) - 1; i >= 0; i--) {
max_heapify(i, len)
}
for (var j = len - 1; j > k; j--) {
swap(0, j)
max_heapify(0, j)
}
return arr
}
heap_sort(a);
- 堆排序最核心的点就在于排序前先建堆
- 由于堆其实就是完全二叉树,如果父节点的序号为 n,那么叶子节点的序号就分别是 2n 和 2n+1
堆排序最后有两个循环:
- 第一个是处理父节点的顺序
- 第二个循环则是根据父节点和叶子节点的大小对比,进行堆的调整。通过这两轮循环的调整,最后堆排序完成。
5.归并排序
归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。
function mergeSort(array) {
const merge = (right, left) => {
const result = []
let il = 0
let ir = 0
while (il < left.length && ir < right.length) {
if (left[il] < right[ir]) {
result.push(left[il++])
} else {
result.push(right[ir++])
}
}
while (il < left.length) {
result.push(left[il++])
}
while (ir < right.length) {
result.push(right[ir++])
}
return result
}
const mergeSort = array => {
if (array.length === 1) { return array }
const mid = Math.floor(array.length / 2)
const left = array.slice(0, mid)
const right = array.slice(mid, array.length)
return merge(mergeSort(left), mergeSort(right))
}
return mergeSort(array)
}
mergeSort(a);
从上面这段代码中可以看到,通过归并排序可以得到想要的结果。上面提到了分治的思路,你可以从 mergeSort 方法中看到,通过 mid 可以把该数组分成左右两个数组,分别对这两个进行递归调用排序方法,最后将两个数组按照顺序归并起来。
归并排序是一种稳定的排序方法,和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好得多,因为始终都是 O(nlogn) 的时间复杂度。而代价是需要额外的内存空间。