Parameters ----------
fun : callable
The objective function to be minimized.
fun(x, *args) -> float``
where ``x`` is a 1-D array with shape (n,) and ``args``
is a tuple of the fixed parameters needed to completely
specify the function.
x0 : ndarray, shape (n,)
Initial guess. Array of real elements of size (n,),
where ``n`` is the number of independent variables.
args : tuple, optional
Extra arguments passed to the objective function and its
derivatives (`fun`, `jac` and `hess` functions).
method : str or callable, optional
Type of solver. Should be one of
- 'Nelder-Mead' :ref:`(see here) <optimize.minimize-neldermead>`
- 'Powell' :ref:`(see here) <optimize.minimize-powell>`
- 'CG' :ref:`(see here) <optimize.minimize-cg>`
- 'BFGS' :ref:`(see here) <optimize.minimize-bfgs>`
- 'Newton-CG' :ref:`(see here) <optimize.minimize-newtoncg>`
- 'L-BFGS-B' :ref:`(see here) <optimize.minimize-lbfgsb>`
- 'TNC' :ref:`(see here) <optimize.minimize-tnc>`
- 'COBYLA' :ref:`(see here) <optimize.minimize-cobyla>`
- 'SLSQP' :ref:`(see here) <optimize.minimize-slsqp>`
- 'trust-constr':ref:`(see here) <optimize.minimize-trustconstr>`
- 'dogleg' :ref:`(see here) <optimize.minimize-dogleg>`
- 'trust-ncg' :ref:`(see here) <optimize.minimize-trustncg>`
- 'trust-exact' :ref:`(see here) <optimize.minimize-trustexact>`
- 'trust-krylov' :ref:`(see here) <optimize.minimize-trustkrylov>`
- custom - a callable object, see below for description.
If not given, chosen to be one of ``BFGS``, ``L-BFGS-B``, ``SLSQP``,
depending on whether or not the problem has constraints or bounds.
参数 ---------- 乐趣:可调用 要最小化的目标函数。
''fun(x, *args) -> float''
其中“x”是形状为 (n,) 和“args”的一维数组 是完全需要的固定参数的元组 指定函数。
x0 : 阵列,形状 (n,)
初步猜测。大小为 (n,) 的实数组元素数组,
其中“n”是自变量的数量。
参数:元组,可选
传递给目标函数及其的额外参数
衍生物(“乐趣”、“JAC”和“HESS”函数)。
方法:STR或可调用,可选
求解器的类型。 应该是其中之一
-
'Nelder-Mead' :
-
ref:'(见这里) <optimize.minimize-neldermead>'
- '鲍威尔' :ref:“(见这里) <优化.最小化-鲍威尔>' - 'CG' :ref:'(见这里) <优化.最小化-cg>' - 'BFGS' :ref:'(见这里) <优化.最小化-BFGS>' - 'Newton-CG' :ref:'(见这里) <optimize.minimize-newtoncg>' - 'L-BFGS-B' :ref:'(见这里) <optimize.minimize-lbfgsb>' - 'TNC' :ref:“(见这里) <优化.最小化-tnc>' - 'COBYLA' :ref:'(见这里) <optimize.minimize-cobyla>' - 'SLSQP' :ref:'(见这里) <optimize.minimize-slsqp>' - 'trust-constr':ref:'(见这里) <optimize.minimize-trustconstr>' - 'dogleg' :ref:“(见这里) <optimize.minimize-dogleg>' - 'trust-ncg' :ref:'(见这里) <optimize.minimize-trustncg>' - 'trust-exact' :ref:'(见这里) <optimize.minimize-trustexact>' - 'Trust-Krylov' :ref:'(见这里) <优化.最小化-信任Krylov>' - 自定义 - 可调用的对象,请参阅下面的说明。
如果没有给出,则选择成为“BFGS”,“L-BFGS-B”,“SLSQP”之一, 取决于问题是否有约束或边界。
Parameter fun of scipy.optimize._minimize.minimize fun: Callable
The objective function to be minimized. fun(x, *args) -> float where x is a 1-D array with shape (n,) and args is a tuple of the fixed parameters needed to completely specify the function.
参数乐趣 scipy.optimize._minimize.最小化乐趣:可调用 要最小化的目标函数。''fun(x, *args) -> float'' 其中 'x'' 是一个形状为 (n,) 的一维数组,''args'' 是完全指定函数所需的固定参数元组。