Java全栈知识点问题汇总(上)-(三)

55 阅读1小时+

续接上篇 Java全栈知识点问题汇总(上)-(二) Java并发 后续内容

3.8 JUC工具类

什么是CountDownLatch?

CountDownLatch底层也是由AQS,用来同步一个或多个任务的常用并发工具类,强制它们等待由其他任务执行的一组操作完成。

CountDownLatch底层实现原理?

其底层是由AQS提供支持,所以其数据结构可以参考AQS的数据结构,而AQS的数据结构核心就是两个虚拟队列: 同步队列sync queue 和条件队列condition queue,不同的条件会有不同的条件队列。CountDownLatch典型的用法是将一个程序分为n个互相独立的可解决任务,并创建值为n的CountDownLatch。当每一个任务完成时,都会在这个锁存器上调用countDown,等待问题被解决的任务调用这个锁存器的await,将他们自己拦住,直至锁存器计数结束。

CountDownLatch一次可以唤醒几个任务?

多个

CountDownLatch有哪些主要方法?

await(), 此函数将会使当前线程在锁存器倒计数至零之前一直等待,除非线程被中断。

countDown(), 此函数将递减锁存器的计数,如果计数到达零,则释放所有等待的线程

写道题:实现一个容器,提供两个方法,add,size 写两个线程,线程1添加10个元素到容器中,线程2实现监控元素的个数,当个数到5个时,线程2给出提示并结束?

说出使用CountDownLatch 代替wait notify 好处?

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.CountDownLatch;
​
/**
 * 使用CountDownLatch 代替wait notify 好处是通讯方式简单,不涉及锁定  Count 值为0时当前线程继续执行,
 */
public class T3 {
​
   volatile List list = new ArrayList();
​
    public void add(int i){
        list.add(i);
    }
​
    public int getSize(){
        return list.size();
    }
​
​
    public static void main(String[] args) {
        T3 t = new T3();
        CountDownLatch countDownLatch = new CountDownLatch(1);
​
        new Thread(() -> {
            System.out.println("t2 start");
           if(t.getSize() != 5){
               try {
                   countDownLatch.await();
                   System.out.println("t2 end");
               } catch (InterruptedException e) {
                   e.printStackTrace();
               }
           }
        },"t2").start();
​
        new Thread(()->{
            System.out.println("t1 start");
           for (int i = 0;i<9;i++){
               t.add(i);
               System.out.println("add"+ i);
               if(t.getSize() == 5){
                   System.out.println("countdown is open");
                   countDownLatch.countDown();
               }
           }
            System.out.println("t1 end");
        },"t1").start();
    }
​
}

什么是CyclicBarrier?

  • 对于CountDownLatch,其他线程为游戏玩家,比如英雄联盟,主线程为控制游戏开始的线程。在所有的玩家都准备好之前,主线程是处于等待状态的,也就是游戏不能开始。当所有的玩家准备好之后,下一步的动作实施者为主线程,即开始游戏。
  • 对于CyclicBarrier,假设有一家公司要全体员工进行团建活动,活动内容为翻越三个障碍物,每一个人翻越障碍物所用的时间是不一样的。但是公司要求所有人在翻越当前障碍物之后再开始翻越下一个障碍物,也就是所有人翻越第一个障碍物之后,才开始翻越第二个,以此类推。类比地,每一个员工都是一个“其他线程”。当所有人都翻越的所有的障碍物之后,程序才结束。而主线程可能早就结束了,这里我们不用管主线程。

CountDownLatch和CyclicBarrier对比?

  • CountDownLatch减计数,CyclicBarrier加计数。
  • CountDownLatch是一次性的,CyclicBarrier可以重用。
  • CountDownLatch和CyclicBarrier都有让多个线程等待同步然后再开始下一步动作的意思,但是CountDownLatch的下一步的动作实施者是主线程,具有不可重复性;而CyclicBarrier的下一步动作实施者还是“其他线程”本身,具有往复多次实施动作的特点。

什么是Semaphore?

Semaphore底层是基于AbstractQueuedSynchronizer来实现的。Semaphore称为计数信号量,它允许n个任务同时访问某个资源,可以将信号量看做是在向外分发使用资源的许可证,只有成功获取许可证,才能使用资源

Semaphore内部原理?

Semaphore总共有三个内部类,并且三个内部类是紧密相关的,下面先看三个类的关系。

img

说明: Semaphore与ReentrantLock的内部类的结构相同,类内部总共存在Sync、NonfairSync、FairSync三个类,NonfairSync与FairSync类继承自Sync类,Sync类继承自AbstractQueuedSynchronizer抽象类。下面逐个进行分析。

Semaphore常用方法有哪些? 如何实现线程同步和互斥的?

单独使用Semaphore是不会使用到AQS的条件队列?

不同于CyclicBarrier和ReentrantLock,单独使用Semaphore是不会使用到AQS的条件队列的,其实,只有进行await操作才会进入条件队列,其他的都是在同步队列中,只是当前线程会被park。

Semaphore初始化有10个令牌,11个线程同时各调用1次acquire方法,会发生什么?

拿不到令牌的线程阻塞,不会继续往下运行。

Semaphore初始化有10个令牌,一个线程重复调用11次acquire方法,会发生什么?

线程阻塞,不会继续往下运行。可能你会考虑类似于锁的重入的问题,很好,但是,令牌没有重入的概念。你只要调用一次acquire方法,就需要有一个令牌才能继续运行。

Semaphore初始化有1个令牌,1个线程调用一次acquire方法,然后调用两次release方法,之后另外一个线程调用acquire(2)方法,此线程能够获取到足够的令牌并继续运行吗?

能,原因是release方法会添加令牌,并不会以初始化的大小为准。

Semaphore初始化有2个令牌,一个线程调用1次release方法,然后一次性获取3个令牌,会获取到吗?

能,原因是release会添加令牌,并不会以初始化的大小为准。Semaphore中release方法的调用并没有限制要在acquire后调用。

具体示例如下,如果不相信的话,可以运行一下下面的demo,在做实验之前,笔者也认为应该是不允许的。。

public class TestSemaphore2 {
    public static void main(String[] args) {
        int permitsNum = 2;
        final Semaphore semaphore = new Semaphore(permitsNum);
        try {
            System.out.println("availablePermits:"+semaphore.availablePermits()+",semaphore.tryAcquire(3,1, TimeUnit.SECONDS):"+semaphore.tryAcquire(3,1, TimeUnit.SECONDS));
            semaphore.release();
            System.out.println("availablePermits:"+semaphore.availablePermits()+",semaphore.tryAcquire(3,1, TimeUnit.SECONDS):"+semaphore.tryAcquire(3,1, TimeUnit.SECONDS));
        }catch (Exception e) {
​
        }
    }
}

Phaser主要用来解决什么问题?

Phaser是JDK 7新增的一个同步辅助类,它可以实现CyclicBarrier和CountDownLatch类似的功能,而且它支持对任务的动态调整,并支持分层结构来达到更高的吞吐量。

Phaser与CyclicBarrier和CountDownLatch的区别是什么?

Phaser 和 CountDownLatch、CyclicBarrier 都有很相似的地方。

Phaser 顾名思义,就是可以分阶段的进行线程同步。

  • CountDownLatch 只能在创建实例时,通过构造方法指定同步数量;
  • Phaser 支持线程动态地向它注册。

利用这个动态注册的特性,可以达到分阶段同步控制的目的:

注册一批操作,等待它们执行结束;再注册一批操作,等它们结束...

Phaser运行机制是什么样的?

img

  • Registration(注册)

跟其他barrier不同,在phaser上注册的parties会随着时间的变化而变化。任务可以随时注册(使用方法register,bulkRegister注册,或者由构造器确定初始parties),并且在任何抵达点可以随意地撤销注册(方法arriveAndDeregister)。就像大多数基本的同步结构一样,注册和撤销只影响内部count;不会创建更深的内部记录,所以任务不能查询他们是否已经注册。(不过,可以通过继承来实现类似的记录)

  • Synchronization(同步机制)

和CyclicBarrier一样,Phaser也可以重复await。方法arriveAndAwaitAdvance的效果类似CyclicBarrier.await。phaser的每一代都有一个相关的phase number,初始值为0,当所有注册的任务都到达phaser时phase+1,到达最大值(Integer.MAX_VALUE)之后清零。使用phase number可以独立控制 到达phaser 和 等待其他线程 的动作,通过下面两种类型的方法:

  • Arrival(到达机制) arrive和arriveAndDeregister方法记录到达状态。这些方法不会阻塞,但是会返回一个相关的arrival phase number;也就是说,phase number用来确定到达状态。当所有任务都到达给定phase时,可以执行一个可选的函数,这个函数通过重写onAdvance方法实现,通常可以用来控制终止状态。重写此方法类似于为CyclicBarrier提供一个barrierAction,但比它更灵活。
  • Waiting(等待机制) awaitAdvance方法需要一个表示arrival phase number的参数,并且在phaser前进到与给定phase不同的phase时返回。和CyclicBarrier不同,即使等待线程已经被中断,awaitAdvance方法也会一直等待。中断状态和超时时间同样可用,但是当任务等待中断或超时后未改变phaser的状态时会遭遇异常。如果有必要,在方法forceTermination之后可以执行这些异常的相关的handler进行恢复操作,Phaser也可能被ForkJoinPool中的任务使用,这样在其他任务阻塞等待一个phase时可以保证足够的并行度来执行任务。
  • Termination(终止机制) :

可以用isTerminated方法检查phaser的终止状态。在终止时,所有同步方法立刻返回一个负值。在终止时尝试注册也没有效果。当调用onAdvance返回true时Termination被触发。当deregistration操作使已注册的parties变为0时,onAdvance的默认实现就会返回true。也可以重写onAdvance方法来定义终止动作。forceTermination方法也可以释放等待线程并且允许它们终止。

  • Tiering(分层结构) :

Phaser支持分层结构(树状构造)来减少竞争。注册了大量parties的Phaser可能会因为同步竞争消耗很高的成本, 因此可以设置一些子Phaser来共享一个通用的parent。这样的话即使每个操作消耗了更多的开销,但是会提高整体吞吐量。 在一个分层结构的phaser里,子节点phaser的注册和取消注册都通过父节点管理。子节点phaser通过构造或方法register、bulkRegister进行首次注册时,在其父节点上注册。子节点phaser通过调用arriveAndDeregister进行最后一次取消注册时,也在其父节点上取消注册。

  • Monitoring(状态监控) :

由于同步方法可能只被已注册的parties调用,所以phaser的当前状态也可能被任何调用者监控。在任何时候,可以通过getRegisteredParties获取parties数,其中getArrivedParties方法返回已经到达当前phase的parties数。当剩余的parties(通过方法getUnarrivedParties获取)到达时,phase进入下一代。这些方法返回的值可能只表示短暂的状态,所以一般来说在同步结构里并没有啥卵用。

给一个Phaser使用的示例?

模拟了100米赛跑,10名选手,只等裁判一声令下。当所有人都到达终点时,比赛结束。

public class Match {
​
    // 模拟了100米赛跑,10名选手,只等裁判一声令下。当所有人都到达终点时,比赛结束。
    public static void main(String[] args) throws InterruptedException {
​
        final Phaser phaser=new Phaser(1) ;
        // 十名选手
        for (int index = 0; index < 10; index++) {
            phaser.register();
            new Thread(new player(phaser),"player"+index).start();
        }
        System.out.println("Game Start");
        //注销当前线程,比赛开始
        phaser.arriveAndDeregister();
        //是否非终止态一直等待
        while(!phaser.isTerminated()){
        }
        System.out.println("Game Over");
    }
}
class player implements Runnable{
​
    private  final Phaser phaser ;
​
    player(Phaser phaser){
        this.phaser=phaser;
    }
    @Override
    public void run() {
        try {
            // 第一阶段——等待创建好所有线程再开始
            phaser.arriveAndAwaitAdvance();
​
            // 第二阶段——等待所有选手准备好再开始
            Thread.sleep((long) (Math.random() * 10000));
            System.out.println(Thread.currentThread().getName() + " ready");
            phaser.arriveAndAwaitAdvance();
​
            // 第三阶段——等待所有选手准备好到达,到达后,该线程从phaser中注销,不在进行下面的阶段。
            Thread.sleep((long) (Math.random() * 10000));
            System.out.println(Thread.currentThread().getName() + " arrived");
            phaser.arriveAndDeregister();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

Exchanger主要解决什么问题?

Exchanger用于进行两个线程之间的数据交换。它提供一个同步点,在这个同步点,两个线程可以交换彼此的数据。这两个线程通过exchange()方法交换数据,当一个线程先执行exchange()方法后,它会一直等待第二个线程也执行exchange()方法,当这两个线程到达同步点时,这两个线程就可以交换数据了。

对比SynchronousQueue,为什么说Exchanger可被视为 SynchronousQueue 的双向形式?

Exchanger是一种线程间安全交换数据的机制。可以和之前分析过的SynchronousQueue对比一下:线程A通过SynchronousQueue将数据a交给线程B;线程A通过Exchanger和线程B交换数据,线程A把数据a交给线程B,同时线程B把数据b交给线程A。可见,SynchronousQueue是交给一个数据,Exchanger是交换两个数据。

Exchanger在不同的JDK版本中实现有什么差别?

  • 在JDK5中Exchanger被设计成一个容量为1的容器,存放一个等待线程,直到有另外线程到来就会发生数据交换,然后清空容器,等到下一个到来的线程。
  • 从JDK6开始,Exchanger用了类似ConcurrentMap的分段思想,提供了多个slot,增加了并发执行时的吞吐量。

Exchanger实现举例

来一个非常经典的并发问题:你有相同的数据buffer,一个或多个数据生产者,和一个或多个数据消费者。只是Exchange类只能同步2个线程,所以你只能在你的生产者和消费者问题中只有一个生产者和一个消费者时使用这个类。

public class Test {
    static class Producer extends Thread {
        private Exchanger<Integer> exchanger;
        private static int data = 0;
        Producer(String name, Exchanger<Integer> exchanger) {
            super("Producer-" + name);
            this.exchanger = exchanger;
        }
​
        @Override
        public void run() {
            for (int i=1; i<5; i++) {
                try {
                    TimeUnit.SECONDS.sleep(1);
                    data = i;
                    System.out.println(getName()+" 交换前:" + data);
                    data = exchanger.exchange(data);
                    System.out.println(getName()+" 交换后:" + data);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }
    }
​
    static class Consumer extends Thread {
        private Exchanger<Integer> exchanger;
        private static int data = 0;
        Consumer(String name, Exchanger<Integer> exchanger) {
            super("Consumer-" + name);
            this.exchanger = exchanger;
        }
​
        @Override
        public void run() {
            while (true) {
                data = 0;
                System.out.println(getName()+" 交换前:" + data);
                try {
                    TimeUnit.SECONDS.sleep(1);
                    data = exchanger.exchange(data);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println(getName()+" 交换后:" + data);
            }
        }
    }
​
    public static void main(String[] args) throws InterruptedException {
        Exchanger<Integer> exchanger = new Exchanger<Integer>();
        new Producer("", exchanger).start();
        new Consumer("", exchanger).start();
        TimeUnit.SECONDS.sleep(7);
        System.exit(-1);
    }
}

可以看到,其结果可能如下:

Consumer- 交换前:0
Producer- 交换前:1
Consumer- 交换后:1
Consumer- 交换前:0
Producer- 交换后:0
Producer- 交换前:2
Producer- 交换后:0
Consumer- 交换后:2
Consumer- 交换前:0
Producer- 交换前:3
Producer- 交换后:0
Consumer- 交换后:3
Consumer- 交换前:0
Producer- 交换前:4
Producer- 交换后:0
Consumer- 交换后:4
Consumer- 交换前:0

什么是ThreadLocal? 用来解决什么问题的?

我们在Java 并发 - 并发理论基础总结过线程安全(是指广义上的共享资源访问安全性,因为线程隔离是通过副本保证本线程访问资源安全性,它不保证线程之间还存在共享关系的狭义上的安全性)的解决思路:

  • 互斥同步: synchronized 和 ReentrantLock
  • 非阻塞同步: CAS, AtomicXXXX
  • 无同步方案: 栈封闭,本地存储(Thread Local),可重入代码

ThreadLocal是通过线程隔离的方式防止任务在共享资源上产生冲突, 线程本地存储是一种自动化机制,可以为使用相同变量的每个不同线程都创建不同的存储。

ThreadLocal是一个将在多线程中为每一个线程创建单独的变量副本的类; 当使用ThreadLocal来维护变量时, ThreadLocal会为每个线程创建单独的变量副本, 避免因多线程操作共享变量而导致的数据不一致的情况。

说说你对ThreadLocal的理解

提到ThreadLocal被提到应用最多的是session管理和数据库链接管理,这里以数据访问为例帮助你理解ThreadLocal:

  • 如下数据库管理类在单线程使用是没有任何问题的
class ConnectionManager {
    private static Connection connect = null;
​
    public static Connection openConnection() {
        if (connect == null) {
            connect = DriverManager.getConnection();
        }
        return connect;
    }
​
    public static void closeConnection() {
        if (connect != null)
            connect.close();
    }
}

很显然,在多线程中使用会存在线程安全问题:第一,这里面的2个方法都没有进行同步,很可能在openConnection方法中会多次创建connect;第二,由于connect是共享变量,那么必然在调用connect的地方需要使用到同步来保障线程安全,因为很可能一个线程在使用connect进行数据库操作,而另外一个线程调用closeConnection关闭链接。

  • 为了解决上述线程安全的问题,第一考虑:互斥同步

你可能会说,将这段代码的两个方法进行同步处理,并且在调用connect的地方需要进行同步处理,比如用Synchronized或者ReentrantLock互斥锁。

  • 这里再抛出一个问题:这地方到底需不需要将connect变量进行共享?

事实上,是不需要的。假如每个线程中都有一个connect变量,各个线程之间对connect变量的访问实际上是没有依赖关系的,即一个线程不需要关心其他线程是否对这个connect进行了修改的。即改后的代码可以这样:

class ConnectionManager {
    private Connection connect = null;
​
    public Connection openConnection() {
        if (connect == null) {
            connect = DriverManager.getConnection();
        }
        return connect;
    }
​
    public void closeConnection() {
        if (connect != null)
            connect.close();
    }
}
​
class Dao {
    public void insert() {
        ConnectionManager connectionManager = new ConnectionManager();
        Connection connection = connectionManager.openConnection();
​
        // 使用connection进行操作
​
        connectionManager.closeConnection();
    }
}

这样处理确实也没有任何问题,由于每次都是在方法内部创建的连接,那么线程之间自然不存在线程安全问题。但是这样会有一个致命的影响:导致服务器压力非常大,并且严重影响程序执行性能。由于在方法中需要频繁地开启和关闭数据库连接,这样不仅严重影响程序执行效率,还可能导致服务器压力巨大。

  • 这时候ThreadLocal登场了

那么这种情况下使用ThreadLocal是再适合不过的了,因为ThreadLocal在每个线程中对该变量会创建一个副本,即每个线程内部都会有一个该变量,且在线程内部任何地方都可以使用,线程之间互不影响,这样一来就不存在线程安全问题,也不会严重影响程序执行性能。下面就是网上出现最多的例子:

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
​
public class ConnectionManager {
​
    private static final ThreadLocal<Connection> dbConnectionLocal = new ThreadLocal<Connection>() {
        @Override
        protected Connection initialValue() {
            try {
                return DriverManager.getConnection("", "", "");
            } catch (SQLException e) {
                e.printStackTrace();
            }
            return null;
        }
    };
​
    public Connection getConnection() {
        return dbConnectionLocal.get();
    }
}

ThreadLocal是如何实现线程隔离的?

ThreadLocalMap

为什么ThreadLocal会造成内存泄露? 如何解决

网上有这样一个例子:

import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
​
public class ThreadLocalDemo {
    static class LocalVariable {
        private Long[] a = new Long[1024 * 1024];
    }
​
    // (1)
    final static ThreadPoolExecutor poolExecutor = new ThreadPoolExecutor(5, 5, 1, TimeUnit.MINUTES,
            new LinkedBlockingQueue<>());
    // (2)
    final static ThreadLocal<LocalVariable> localVariable = new ThreadLocal<LocalVariable>();
​
    public static void main(String[] args) throws InterruptedException {
        // (3)
        Thread.sleep(5000 * 4);
        for (int i = 0; i < 50; ++i) {
            poolExecutor.execute(new Runnable() {
                public void run() {
                    // (4)
                    localVariable.set(new LocalVariable());
                    // (5)
                    System.out.println("use local varaible" + localVariable.get());
                    localVariable.remove();
                }
            });
        }
        // (6)
        System.out.println("pool execute over");
    }
}

如果用线程池来操作ThreadLocal 对象确实会造成内存泄露, 因为对于线程池里面不会销毁的线程, 里面总会存在着<ThreadLocal, LocalVariable>的强引用, 因为final static 修饰的 ThreadLocal 并不会释放, 而ThreadLocalMap 对于 Key 虽然是弱引用, 但是强引用不会释放, 弱引用当然也会一直有值, 同时创建的LocalVariable对象也不会释放, 就造成了内存泄露; 如果LocalVariable对象不是一个大对象的话, 其实泄露的并不严重, 泄露的内存 = 核心线程数 * LocalVariable对象的大小;

所以, 为了避免出现内存泄露的情况, ThreadLocal提供了一个清除线程中对象的方法, 即 remove, 其实内部实现就是调用 ThreadLocalMap 的remove方法:

private void remove(ThreadLocal<?> key) {
    Entry[] tab = table;
    int len = tab.length;
    int i = key.threadLocalHashCode & (len-1);
    for (Entry e = tab[i];
         e != null;
         e = tab[i = nextIndex(i, len)]) {
        if (e.get() == key) {
            e.clear();
            expungeStaleEntry(i);
            return;
        }
    }
}

找到Key对应的Entry, 并且清除Entry的Key(ThreadLocal)置空, 随后清除过期的Entry即可避免内存泄露。

还有哪些使用ThreadLocal的应用场景?

  • 每个线程维护了一个“序列号”
public class SerialNum {
    // The next serial number to be assigned
    private static int nextSerialNum = 0;
​
    private static ThreadLocal serialNum = new ThreadLocal() {
        protected synchronized Object initialValue() {
            return new Integer(nextSerialNum++);
        }
    };
​
    public static int get() {
        return ((Integer) (serialNum.get())).intValue();
    }
}
​
+ 经典的另外一个例子:
​
```java
private static final ThreadLocal threadSession = new ThreadLocal();  
  
public static Session getSession() throws InfrastructureException {  
    Session s = (Session) threadSession.get();  
    try {  
        if (s == null) {  
            s = getSessionFactory().openSession();  
            threadSession.set(s);  
        }  
    } catch (HibernateException ex) {  
        throw new InfrastructureException(ex);  
    }  
    return s;  
}  
  • 看看阿里巴巴 java 开发手册中推荐的 ThreadLocal 的用法:
import java.text.DateFormat;
import java.text.SimpleDateFormat;
 
public class DateUtils {
    public static final ThreadLocal<DateFormat> df = new ThreadLocal<DateFormat>(){
        @Override
        protected DateFormat initialValue() {
            return new SimpleDateFormat("yyyy-MM-dd");
        }
    };
}

然后我们再要用到 DateFormat 对象的地方,这样调用:

DateUtils.df.get().format(new Date());

4 Java IO

Java IO相关

4.1 基础IO

如何从数据传输方式理解IO流?

从数据传输方式或者说是运输方式角度看,可以将 IO 类分为:

  1. 字节流, 字节流读取单个字节,字符流读取单个字符(一个字符根据编码的不同,对应的字节也不同,如 UTF-8 编码中文汉字是 3 个字节,GBK编码中文汉字是 2 个字节。)
  2. 字符流, 字节流用来处理二进制文件(图片、MP3、视频文件),字符流用来处理文本文件(可以看做是特殊的二进制文件,使用了某种编码,人可以阅读)。

字节是给计算机看的,字符才是给人看的

  • 字节流

img

  • 字符流

img

  • 字节转字符

img

# 如何从数据操作上理解IO流?

从数据来源或者说是操作对象角度看,IO 类可以分为:

img

Java IO设计上使用了什么设计模式?

装饰者模式: 所谓装饰,就是把这个装饰者套在被装饰者之上,从而动态扩展被装饰者的功能。

  • 装饰者举例

设计不同种类的饮料,饮料可以添加配料,比如可以添加牛奶,并且支持动态添加新配料。每增加一种配料,该饮料的价格就会增加,要求计算一种饮料的价格。

下图表示在 DarkRoast 饮料上新增新添加 Mocha 配料,之后又添加了 Whip 配料。DarkRoast 被 Mocha 包裹,Mocha 又被 Whip 包裹。它们都继承自相同父类,都有 cost() 方法,外层类的 cost() 方法调用了内层类的 cost() 方法。

img

  • 以 InputStream 为例

    • InputStream 是抽象组件;
    • FileInputStream 是 InputStream 的子类,属于具体组件,提供了字节流的输入操作;
    • FilterInputStream 属于抽象装饰者,装饰者用于装饰组件,为组件提供额外的功能。例如 BufferedInputStream 为 FileInputStream 提供缓存的功能。

image

实例化一个具有缓存功能的字节流对象时,只需要在 FileInputStream 对象上再套一层 BufferedInputStream 对象即可。

FileInputStream fileInputStream = new FileInputStream(filePath);
BufferedInputStream bufferedInputStream = new BufferedInputStream(fileInputStream);

DataInputStream 装饰者提供了对更多数据类型进行输入的操作,比如 int、double 等基本类型。

4.2 5种IO模型

什么是阻塞?什么是同步?

  • 阻塞IO 和 非阻塞IO

这两个概念是程序级别的。主要描述的是程序请求操作系统IO操作后,如果IO资源没有准备好,那么程序该如何处理的问题: 前者等待;后者继续执行(并且使用线程一直轮询,直到有IO资源准备好了)

  • 同步IO 和 非同步IO

这两个概念是操作系统级别的。主要描述的是操作系统在收到程序请求IO操作后,如果IO资源没有准备好,该如何响应程序的问题: 前者不响应,直到IO资源准备好以后;后者返回一个标记(好让程序和自己知道以后的数据往哪里通知),当IO资源准备好以后,再用事件机制返回给程序。

什么是Linux的IO模型?

网络IO的本质是socket的读取,socket在linux系统被抽象为流,IO可以理解为对流的操作。刚才说了,对于一次IO访问(以read举例),数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。所以说,当一个read操作发生时,它会经历两个阶段:

  • 第一阶段:等待数据准备 (Waiting for the data to be ready)。
  • 第二阶段:将数据从内核拷贝到进程中 (Copying the data from the kernel to the process)。

对于socket流而言,

  • 第一步:通常涉及等待网络上的数据分组到达,然后被复制到内核的某个缓冲区。
  • 第二步:把数据从内核缓冲区复制到应用进程缓冲区。

网络应用需要处理的无非就是两大类问题,网络IO,数据计算。相对于后者,网络IO的延迟,给应用带来的性能瓶颈大于后者。网络IO的模型大致有如下几种:

  1. 同步阻塞IO(bloking IO)
  2. 同步非阻塞IO(non-blocking IO)
  3. 多路复用IO(multiplexing IO)
  4. 信号驱动式IO(signal-driven IO)
  5. 异步IO(asynchronous IO)

img

PS: 这块略复杂,在后面的提供了问答,所以用了最简单的举例结合Linux IO图例帮你快速理解。@pdai

什么是同步阻塞IO?

应用进程被阻塞,直到数据复制到应用进程缓冲区中才返回。

  • 举例理解

你早上去买有现炸油条,你点单,之后一直等店家做好,期间你啥其它事也做不了。(你就是应用级别,店家就是操作系统级别, 应用被阻塞了不能做其它事)

  • Linux 中IO图例

img

什么是同步非阻塞IO?

应用进程执行系统调用之后,内核返回一个错误码。应用进程可以继续执行,但是需要不断的执行系统调用来获知 I/O 是否完成,这种方式称为轮询(polling)。

  • 举例理解

你早上去买现炸油条,你点单,点完后每隔一段时间询问店家有没有做好,期间你可以做点其它事情。(你就是应用级别,店家就是操作系统级别,应用可以做其它事情并通过轮询来看操作系统是否完成)

  • Linux 中IO图例

img

什么是多路复用IO?

系统调用可能是由多个任务组成的,所以可以拆成多个任务,这就是多路复用。

  • 举例理解

你早上去买现炸油条,点单收钱和炸油条原来都是由一个人完成的,现在他成了瓶颈,所以专门找了个收银员下单收钱,他则专注在炸油条。(本质上炸油条是耗时的瓶颈,将他职责分离出不是瓶颈的部分,比如下单收银,对应到系统级别也时一样的意思)

  • Linux 中IO图例

使用 select 或者 poll 等待数据,并且可以等待多个套接字中的任何一个变为可读,这一过程会被阻塞,当某一个套接字可读时返回。之后再使用 recvfrom 把数据从内核复制到进程中。

它可以让单个进程具有处理多个 I/O 事件的能力。又被称为 Event Driven I/O,即事件驱动 I/O。

img

有哪些多路复用IO?

目前流程的多路复用IO实现主要包括四种: selectpollepollkqueue。下表是他们的一些重要特性的比较:

IO模型相对性能关键思路操作系统JAVA支持情况
select较高Reactorwindows/Linux支持,Reactor模式(反应器设计模式)。Linux操作系统的 kernels 2.4内核版本之前,默认使用select;而目前windows下对同步IO的支持,都是select模型
poll较高ReactorLinuxLinux下的JAVA NIO框架,Linux kernels 2.6内核版本之前使用poll进行支持。也是使用的Reactor模式
epollReactor/ProactorLinuxLinux kernels 2.6内核版本及以后使用epoll进行支持;Linux kernels 2.6内核版本之前使用poll进行支持;另外一定注意,由于Linux下没有Windows下的IOCP技术提供真正的 异步IO 支持,所以Linux下使用epoll模拟异步IO
kqueueProactorLinux目前JAVA的版本不支持

多路复用IO技术最适用的是“高并发”场景,所谓高并发是指1毫秒内至少同时有上千个连接请求准备好。其他情况下多路复用IO技术发挥不出来它的优势。另一方面,使用JAVA NIO进行功能实现,相对于传统的Socket套接字实现要复杂一些,所以实际应用中,需要根据自己的业务需求进行技术选择。

什么是信号驱动IO?

应用进程使用 sigaction 系统调用,内核立即返回,应用进程可以继续执行,也就是说等待数据阶段应用进程是非阻塞的。内核在数据到达时向应用进程发送 SIGIO 信号,应用进程收到之后在信号处理程序中调用 recvfrom 将数据从内核复制到应用进程中。

相比于非阻塞式 I/O 的轮询方式,信号驱动 I/O 的 CPU 利用率更高。

  • 举例理解

你早上去买现炸油条,门口排队的人多,现在引入了一个叫号系统,点完单后你就可以做自己的事情了,然后等叫号就去拿就可以了。(所以不用再去自己频繁跑去问有没有做好了)

  • Linux 中IO图例

img

什么是异步IO?

相对于同步IO,异步IO不是顺序执行。用户进程进行aio_read系统调用之后,无论内核数据是否准备好,都会直接返回给用户进程,然后用户态进程可以去做别的事情。等到socket数据准备好了,内核直接复制数据给进程,然后从内核向进程发送通知。IO两个阶段,进程都是非阻塞的。

  • 举例理解

你早上去买现炸油条, 不用去排队了,打开美团外卖下单,然后做其它事,一会外卖自己送上门。(你就是应用级别,店家就是操作系统级别, 应用无需阻塞,这就是非阻塞;系统还可能在处理中,但是立刻响应了应用,这就是异步)

  • Linux 中IO图例

(Linux提供了AIO库函数实现异步,但是用的很少。目前有很多开源的异步IO库,例如libevent、libev、libuv)

img

什么是Reactor模型?

大多数网络框架都是基于Reactor模型进行设计和开发,Reactor模型基于事件驱动,特别适合处理海量的I/O事件。

  • 传统的IO模型

这种模式是传统设计,每一个请求到来时,大致都会按照:请求读取->请求解码->服务执行->编码响应->发送答复 这个流程去处理。

img

服务器会分配一个线程去处理,如果请求暴涨起来,那么意味着需要更多的线程来处理该请求。若请求出现暴涨,线程池的工作线程数量满载那么其它请求就会出现等待或者被抛弃。若每个小任务都可以使用非阻塞的模式,然后基于异步回调模式。这样就大大提高系统的吞吐量,这便引入了Reactor模型。

  • Reactor模型中定义的三种角色
  1. Reactor:负责监听和分配事件,将I/O事件分派给对应的Handler。新的事件包含连接建立就绪、读就绪、写就绪等。
  2. Acceptor:处理客户端新连接,并分派请求到处理器链中。
  3. Handler:将自身与事件绑定,执行非阻塞读/写任务,完成channel的读入,完成处理业务逻辑后,负责将结果写出channel。可用资源池来管理。
  • 单Reactor单线程模型

Reactor线程负责多路分离套接字,accept新连接,并分派请求到handler。Redis使用单Reactor单进程的模型。

img

消息处理流程:

  1. Reactor对象通过select监控连接事件,收到事件后通过dispatch进行转发。
  2. 如果是连接建立的事件,则由acceptor接受连接,并创建handler处理后续事件。
  3. 如果不是建立连接事件,则Reactor会分发调用Handler来响应。
  4. handler会完成read->业务处理->send的完整业务流程。
  • 单Reactor多线程模型

将handler的处理池化。

img

  • 多Reactor多线程模型

主从Reactor模型: 主Reactor用于响应连接请求,从Reactor用于处理IO操作请求,读写分离了。

img

什么是Java NIO?

NIO主要有三大核心部分:Channel(通道),Buffer(缓冲区), Selector。传统IO基于字节流和字符流进行操作,而NIO基于Channel和Buffer(缓冲区)进行操作,数据总是从通道读取到缓冲区中,或者从缓冲区写入到通道中。Selector(选择区)用于监听多个通道的事件(比如:连接打开,数据到达)。因此,单个线程可以监听多个数据通道。

NIO和传统IO(一下简称IO)之间第一个最大的区别是,IO是面向流的,NIO是面向缓冲区的。

img

4.3 零拷贝

传统的IO存在什么问题?为什么引入零拷贝的?

如果服务端要提供文件传输的功能,我们能想到的最简单的方式是:将磁盘上的文件读取出来,然后通过网络协议发送给客户端。

传统 I/O 的工作方式是,数据读取和写入是从用户空间到内核空间来回复制,而内核空间的数据是通过操作系统层面的 I/O 接口从磁盘读取或写入。

代码通常如下,一般会需要两个系统调用:

read(file, tmp_buf, len);
write(socket, tmp_buf, len);

代码很简单,虽然就两行代码,但是这里面发生了不少的事情。

img

首先,期间共发生了 4 次用户态与内核态的上下文切换,因为发生了两次系统调用,一次是 read() ,一次是 write(),每次系统调用都得先从用户态切换到内核态,等内核完成任务后,再从内核态切换回用户态。

上下文切换到成本并不小,一次切换需要耗时几十纳秒到几微秒,虽然时间看上去很短,但是在高并发的场景下,这类时间容易被累积和放大,从而影响系统的性能。

其次,还发生了 4 次数据拷贝,其中两次是 DMA 的拷贝,另外两次则是通过 CPU 拷贝的,下面说一下这个过程:

  • 第一次拷贝,把磁盘上的数据拷贝到操作系统内核的缓冲区里,这个拷贝的过程是通过 DMA 搬运的。
  • 第二次拷贝,把内核缓冲区的数据拷贝到用户的缓冲区里,于是我们应用程序就可以使用这部分数据了,这个拷贝到过程是由 CPU 完成的。
  • 第三次拷贝,把刚才拷贝到用户的缓冲区里的数据,再拷贝到内核的 socket 的缓冲区里,这个过程依然还是由 CPU 搬运的。
  • 第四次拷贝,把内核的 socket 缓冲区里的数据,拷贝到网卡的缓冲区里,这个过程又是由 DMA 搬运的。

我们回过头看这个文件传输的过程,我们只是搬运一份数据,结果却搬运了 4 次,过多的数据拷贝无疑会消耗 CPU 资源,大大降低了系统性能。

这种简单又传统的文件传输方式,存在冗余的上文切换和数据拷贝,在高并发系统里是非常糟糕的,多了很多不必要的开销,会严重影响系统性能。

所以,要想提高文件传输的性能,就需要减少「用户态与内核态的上下文切换」和「内存拷贝」的次数

mmap + write怎么实现的零拷贝?

在前面我们知道,read() 系统调用的过程中会把内核缓冲区的数据拷贝到用户的缓冲区里,于是为了减少这一步开销,我们可以用 mmap() 替换 read() 系统调用函数。

buf = mmap(file, len);
write(sockfd, buf, len);

mmap() 系统调用函数会直接把内核缓冲区里的数据「映射」到用户空间,这样,操作系统内核与用户空间就不需要再进行任何的数据拷贝操作。

img

具体过程如下:

  • 应用进程调用了 mmap() 后,DMA 会把磁盘的数据拷贝到内核的缓冲区里。接着,应用进程跟操作系统内核「共享」这个缓冲区;
  • 应用进程再调用 write(),操作系统直接将内核缓冲区的数据拷贝到 socket 缓冲区中,这一切都发生在内核态,由 CPU 来搬运数据;
  • 最后,把内核的 socket 缓冲区里的数据,拷贝到网卡的缓冲区里,这个过程是由 DMA 搬运的。

我们可以得知,通过使用 mmap() 来代替 read(), 可以减少一次数据拷贝的过程。

但这还不是最理想的零拷贝,因为仍然需要通过 CPU 把内核缓冲区的数据拷贝到 socket 缓冲区里,而且仍然需要 4 次上下文切换,因为系统调用还是 2 次。

sendfile怎么实现的零拷贝?

在 Linux 内核版本 2.1 中,提供了一个专门发送文件的系统调用函数 sendfile(),函数形式如下:

#include <sys/socket.h>
ssize_t sendfile(int out_fd, int in_fd, off_t *offset, size_t count);

它的前两个参数分别是目的端和源端的文件描述符,后面两个参数是源端的偏移量和复制数据的长度,返回值是实际复制数据的长度。

首先,它可以替代前面的 read() 和 write() 这两个系统调用,这样就可以减少一次系统调用,也就减少了 2 次上下文切换的开销。

其次,该系统调用,可以直接把内核缓冲区里的数据拷贝到 socket 缓冲区里,不再拷贝到用户态,这样就只有 2 次上下文切换,和 3 次数据拷贝。如下图:

img

但是这还不是真正的零拷贝技术,如果网卡支持 SG-DMA(The Scatter-Gather Direct Memory Access)技术(和普通的 DMA 有所不同),我们可以进一步减少通过 CPU 把内核缓冲区里的数据拷贝到 socket 缓冲区的过程。

你可以在你的 Linux 系统通过下面这个命令,查看网卡是否支持 scatter-gather 特性:

$ ethtool -k eth0 | grep scatter-gather
scatter-gather: on

于是,从 Linux 内核 2.4 版本开始起,对于支持网卡支持 SG-DMA 技术的情况下, sendfile() 系统调用的过程发生了点变化,具体过程如下:

  • 第一步,通过 DMA 将磁盘上的数据拷贝到内核缓冲区里;
  • 第二步,缓冲区描述符和数据长度传到 socket 缓冲区,这样网卡的 SG-DMA 控制器就可以直接将内核缓存中的数据拷贝到网卡的缓冲区里,此过程不需要将数据从操作系统内核缓冲区拷贝到 socket 缓冲区中,这样就减少了一次数据拷贝;

所以,这个过程之中,只进行了 2 次数据拷贝,如下图:

img

这就是所谓的零拷贝(Zero-copy)技术,因为我们没有在内存层面去拷贝数据,也就是说全程没有通过 CPU 来搬运数据,所有的数据都是通过 DMA 来进行传输的

零拷贝技术的文件传输方式相比传统文件传输的方式,减少了 2 次上下文切换和数据拷贝次数,只需要 2 次上下文切换和数据拷贝次数,就可以完成文件的传输,而且 2 次的数据拷贝过程,都不需要通过 CPU,2 次都是由 DMA 来搬运

5 JVM和调优

JVM虚拟机和调优相关。

5.1 类加载机制

类加载的生命周期?

其中类加载的过程包括了加载、验证、准备、解析、初始化五个阶段。在这五个阶段中,加载、验证、准备和初始化这四个阶段发生的顺序是确定的,而解析阶段则不一定,它在某些情况下可以在初始化阶段之后开始,这是为了支持Java语言的运行时绑定(也成为动态绑定或晚期绑定)*。另外注意这里的几个阶段是按顺序开始,而不是按顺序进行或完成,因为这些阶段通常都是互相交叉地混合进行的,通常在一个阶段执行的过程中调用或激活另一个阶段。

img

  • 类的加载: 查找并加载类的二进制数据

  • 连接

    • 验证: 确保被加载的类的正确性
    • 准备: 为类的静态变量分配内存,并将其初始化为默认值
    • 解析: 把类中的符号引用转换为直接引用
  • 初始化:为类的静态变量赋予正确的初始值,JVM负责对类进行初始化,主要对类变量进行初始化。

  • 使用: 类访问方法区内的数据结构的接口, 对象是Heap区的数据

  • 卸载: 结束生命周期

类加载器的层次?

img

  • 启动类加载器: Bootstrap ClassLoader,负责加载存放在JDK\jre\lib(JDK代表JDK的安装目录,下同)下,或被-Xbootclasspath参数指定的路径中的,并且能被虚拟机识别的类库(如rt.jar,所有的java.*开头的类均被Bootstrap ClassLoader加载)。启动类加载器是无法被Java程序直接引用的。

  • 扩展类加载器: Extension ClassLoader,该加载器由sun.misc.Launcher$ExtClassLoader实现,它负责加载JDK\jre\lib\ext目录中,或者由java.ext.dirs系统变量指定的路径中的所有类库(如javax.*开头的类),开发者可以直接使用扩展类加载器。

  • 应用程序类加载器: Application ClassLoader,该类加载器由sun.misc.Launcher$AppClassLoader来实现,它负责加载用户类路径(ClassPath)所指定的类,开发者可以直接使用该类加载器,如果应用程序中没有自定义过自己的类加载器,一般情况下这个就是程序中默认的类加载器。

  • 自定义类加载器: 因为JVM自带的ClassLoader只是懂得从本地文件系统加载标准的java class文件,因此如果编写了自己的ClassLoader,便可以做到如下几点:

    • 在执行非置信代码之前,自动验证数字签名。
    • 动态地创建符合用户特定需要的定制化构建类。
    • 从特定的场所取得java class,例如数据库中和网络中。

Class.forName()和ClassLoader.loadClass()区别?

  • Class.forName(): 将类的.class文件加载到jvm中之外,还会对类进行解释,执行类中的static块;
  • ClassLoader.loadClass(): 只干一件事情,就是将.class文件加载到jvm中,不会执行static中的内容,只有在newInstance才会去执行static块。
  • Class.forName(name, initialize, loader)带参函数也可控制是否加载static块。并且只有调用了newInstance()方法采用调用构造函数,创建类的对象 。

JVM有哪些类加载机制?

  • JVM类加载机制有哪些
  1. 全盘负责,当一个类加载器负责加载某个Class时,该Class所依赖的和引用的其他Class也将由该类加载器负责载入,除非显示使用另外一个类加载器来载入
  2. 父类委托,先让父类加载器试图加载该类,只有在父类加载器无法加载该类时才尝试从自己的类路径中加载该类
  3. 缓存机制,缓存机制将会保证所有加载过的Class都会被缓存,当程序中需要使用某个Class时,类加载器先从缓存区寻找该Class,只有缓存区不存在,系统才会读取该类对应的二进制数据,并将其转换成Class对象,存入缓存区。这就是为什么修改了Class后,必须重启JVM,程序的修改才会生效
  4. 双亲委派机制, 如果一个类加载器收到了类加载的请求,它首先不会自己去尝试加载这个类,而是把请求委托给父加载器去完成,依次向上,因此,所有的类加载请求最终都应该被传递到顶层的启动类加载器中,只有当父加载器在它的搜索范围中没有找到所需的类时,即无法完成该加载,子加载器才会尝试自己去加载该类。
  • 双亲委派机制过程?
  1. 当AppClassLoader加载一个class时,它首先不会自己去尝试加载这个类,而是把类加载请求委派给父类加载器ExtClassLoader去完成。
  2. 当ExtClassLoader加载一个class时,它首先也不会自己去尝试加载这个类,而是把类加载请求委派给BootStrapClassLoader去完成。
  3. 如果BootStrapClassLoader加载失败(例如在$JAVA_HOME/jre/lib里未查找到该class),会使用ExtClassLoader来尝试加载;
  4. 若ExtClassLoader也加载失败,则会使用AppClassLoader来加载,如果AppClassLoader也加载失败,则会报出异常ClassNotFoundException。

5.2 内存结构

说说JVM内存整体的结构?线程私有还是共享的?

JVM 整体架构,中间部分就是 Java 虚拟机定义的各种运行时数据区域。

jvm-framework

Java 虚拟机定义了若干种程序运行期间会使用到的运行时数据区,其中有一些会随着虚拟机启动而创建,随着虚拟机退出而销毁。另外一些则是与线程一一对应的,这些与线程一一对应的数据区域会随着线程开始和结束而创建和销毁。

  • 线程私有:程序计数器、虚拟机栈、本地方法区
  • 线程共享:堆、方法区, 堆外内存(Java7的永久代或JDK8的元空间、代码缓存)

什么是程序计数器(线程私有)?

PC 寄存器用来存储指向下一条指令的地址,即将要执行的指令代码。由执行引擎读取下一条指令。

  • PC寄存器为什么会被设定为线程私有的?

多线程在一个特定的时间段内只会执行其中某一个线程方法,CPU会不停的做任务切换,这样必然会导致经常中断或恢复。为了能够准确的记录各个线程正在执行的当前字节码指令地址,所以为每个线程都分配了一个PC寄存器,每个线程都独立计算,不会互相影响。

什么是虚拟机栈(线程私有)?

主管 Java 程序的运行,它保存方法的局部变量、部分结果,并参与方法的调用和返回。每个线程在创建的时候都会创建一个虚拟机栈,其内部保存一个个的栈帧(Stack Frame),对应着一次次 Java 方法调用,是线程私有的,生命周期和线程一致。

  • 特点?
  1. 栈是一种快速有效的分配存储方式,访问速度仅次于程序计数器
  2. JVM 直接对虚拟机栈的操作只有两个:每个方法执行,伴随着入栈(进栈/压栈),方法执行结束出栈
  3. 栈不存在垃圾回收问题
  4. 可以通过参数-Xss来设置线程的最大栈空间,栈的大小直接决定了函数调用的最大可达深度
  • 该区域有哪些异常
  1. 如果采用固定大小的 Java 虚拟机栈,那每个线程的 Java 虚拟机栈容量可以在线程创建的时候独立选定。如果线程请求分配的栈容量超过 Java 虚拟机栈允许的最大容量,Java 虚拟机将会抛出一个 StackOverflowError 异常
  2. 如果 Java 虚拟机栈可以动态扩展,并且在尝试扩展的时候无法申请到足够的内存,或者在创建新的线程时没有足够的内存去创建对应的虚拟机栈,那 Java 虚拟机将会抛出一个OutOfMemoryError异常
  • 栈帧的内部结构?
  1. 局部变量表(Local Variables)
  2. 操作数栈(Operand Stack)(或称为表达式栈)
  3. 动态链接(Dynamic Linking):指向运行时常量池的方法引用
  4. 方法返回地址(Return Address):方法正常退出或异常退出的地址
  5. 一些附加信息

jvm-stack-frame

Java虚拟机栈如何进行方法计算的?

以如下代码为例:

private static int add(int a, int b) {
    int c = 0;
    c = a + b;
    return c;
}

可以通过jsclass 等工具查看bytecode

img

压栈的步骤如下:

0:   iconst_0 // 0压栈
1:   istore_2 // 弹出int,存放于局部变量2
2:   iload_0  // 把局部变量0压栈
3:   iload_1  // 局部变量1压栈
4:   iadd     //弹出2个变量,求和,结果压栈
5:   istore_2 //弹出结果,放于局部变量2
6:   iload_2  //局部变量2压栈
7:   ireturn  //返回

如果计算100+98的值,那么操作数栈的变化如下图

img

什么是本地方法栈(线程私有)?

  • 本地方法接口

一个 Native Method 就是一个 Java 调用非 Java 代码的接口。我们知道的 Unsafe 类就有很多本地方法。

  • 本地方法栈(Native Method Stack)

Java 虚拟机栈用于管理 Java 方法的调用,而本地方法栈用于管理本地方法的调用

什么是方法区(线程共享)?

方法区(method area)只是 JVM 规范中定义的一个概念,用于存储类信息、常量池、静态变量、JIT编译后的代码等数据,并没有规定如何去实现它,不同的厂商有不同的实现。而永久代(PermGen)Hotspot 虚拟机特有的概念, Java8 的时候又被 元空间取代了,永久代和元空间都可以理解为方法区的落地实现。

JDK1.8之前调节方法区大小:

-XX:PermSize=N //方法区(永久代)初始大小
-XX:MaxPermSize=N //方法区(永久代)最大大小,超出这个值将会抛出OutOfMemoryError 

JDK1.8开始方法区(HotSpot的永久代)被彻底删除了,取而代之的是元空间,元空间直接使用的是本机内存。参数设置:

-XX:MetaspaceSize=N //设置Metaspace的初始(和最小大小)
-XX:MaxMetaspaceSize=N //设置Metaspace的最大大小

栈、堆、方法区的交互关系

img

永久代和元空间内存使用上的差异?

Java虚拟机规范中只定义了方法区用于存储已被虚拟机加载的类信息、常量、静态变量和即时编译后的代码等数据

  1. jdk1.7开始符号引用存储在native heap中,字符串常量和静态类型变量存储在普通的堆区中,但分离的并不彻底,此时永久代中还保存另一些与类的元数据无关的杂项
  2. jdk8后HotSpot 原永久代中存储的类的元数据将存储在metaspace中,而类的静态变量和字符串常量将放在Java堆中,metaspace是方法区的一种实现,只不过它使用的不是虚拟机内的内存,而是本地内存。在元空间中保存的数据比永久代中纯粹很多,就只是类的元数据,这些信息只对编译期或JVM的运行时有用。
  3. 永久代有一个JVM本身设置固定大小上线,无法进行调整,而元空间使用的是直接内存,受本机可用内存的限制,并且永远不会得到java.lang.OutOfMemoryError
  4. 符号引用没有存在元空间中,而是存在native heap中,这是两个方式和位置,不过都可以算作是本地内存,在虚拟机之外进行划分,没有设置限制参数时只受物理内存大小限制,即只有占满了操作系统可用内存后才OOM。

堆区内存是怎么细分的?

对于大多数应用,Java 堆是 Java 虚拟机管理的内存中最大的一块,被所有线程共享。此内存区域的唯一目的就是存放对象实例,几乎所有的对象实例以及数据都在这里分配内存。

为了进行高效的垃圾回收,虚拟机把堆内存逻辑上划分成三块区域(分代的唯一理由就是优化 GC 性能):

  1. 新生带(年轻代):新对象和没达到一定年龄的对象都在新生代
  2. 老年代(养老区):被长时间使用的对象,老年代的内存空间应该要比年轻代更大

JDK7

Java 虚拟机规范规定,Java 堆可以是处于物理上不连续的内存空间中,只要逻辑上是连续的即可,像磁盘空间一样。实现时,既可以是固定大小,也可以是可扩展的,主流虚拟机都是可扩展的(通过 -Xmx-Xms 控制),如果堆中没有完成实例分配,并且堆无法再扩展时,就会抛出 OutOfMemoryError 异常。

  • 年轻代 (Young Generation)

年轻代是所有新对象创建的地方。当填充年轻代时,执行垃圾收集。这种垃圾收集称为 Minor GC。年轻一代被分为三个部分——伊甸园(Eden Memory)和两个幸存区(Survivor Memory,被称为from/to或s0/s1),默认比例是8:1:1

  1. 大多数新创建的对象都位于 Eden 内存空间中
  2. 当 Eden 空间被对象填充时,执行Minor GC,并将所有幸存者对象移动到一个幸存者空间中
  3. Minor GC 检查幸存者对象,并将它们移动到另一个幸存者空间。所以每次,一个幸存者空间总是空的
  4. 经过多次 GC 循环后存活下来的对象被移动到老年代。通常,这是通过设置年轻一代对象的年龄阈值来实现的,然后他们才有资格提升到老一代
  • 老年代(Old Generation)

旧的一代内存包含那些经过许多轮小型 GC 后仍然存活的对象。通常,垃圾收集是在老年代内存满时执行的。老年代垃圾收集称为 主GC(Major GC),通常需要更长的时间。

大对象直接进入老年代(大对象是指需要大量连续内存空间的对象)。这样做的目的是避免在 Eden 区和两个Survivor 区之间发生大量的内存拷贝

img

JVM中对象在堆中的生命周期?

  1. 在 JVM 内存模型的堆中,堆被划分为新生代和老年代

    • 新生代又被进一步划分为 Eden区Survivor区,Survivor 区由 From SurvivorTo Survivor 组成
  2. 当创建一个对象时,对象会被优先分配到新生代的 Eden 区

    • 此时 JVM 会给对象定义一个对象年轻计数器-XX:MaxTenuringThreshold
  3. 当 Eden 空间不足时,JVM 将执行新生代的垃圾回收(Minor GC)

    • JVM 会把存活的对象转移到 Survivor 中,并且对象年龄 +1
    • 对象在 Survivor 中同样也会经历 Minor GC,每经历一次 Minor GC,对象年龄都会+1
  4. 如果分配的对象超过了-XX:PetenureSizeThreshold,对象会直接被分配到老年代

JVM中对象的分配过程?

为对象分配内存是一件非常严谨和复杂的任务,JVM 的设计者们不仅需要考虑内存如何分配、在哪里分配等问题,并且由于内存分配算法和内存回收算法密切相关,所以还需要考虑 GC 执行完内存回收后是否会在内存空间中产生内存碎片。

  1. new 的对象先放在伊甸园区,此区有大小限制
  2. 当伊甸园的空间填满时,程序又需要创建对象,JVM 的垃圾回收器将对伊甸园区进行垃圾回收(Minor GC),将伊甸园区中的不再被其他对象所引用的对象进行销毁。再加载新的对象放到伊甸园区
  3. 然后将伊甸园中的剩余对象移动到幸存者 0 区
  4. 如果再次触发垃圾回收,此时上次幸存下来的放到幸存者 0 区,如果没有回收,就会放到幸存者 1 区
  5. 如果再次经历垃圾回收,此时会重新放回幸存者 0 区,接着再去幸存者 1 区
  6. 什么时候才会去养老区呢? 默认是 15 次回收标记
  7. 在养老区,相对悠闲。当养老区内存不足时,再次触发 Major GC,进行养老区的内存清理
  8. 若养老区执行了 Major GC 之后发现依然无法进行对象的保存,就会产生 OOM 异常

什么是 TLAB (Thread Local Allocation Buffer)?

  • 从内存模型而不是垃圾回收的角度,对 Eden 区域继续进行划分,JVM 为每个线程分配了一个私有缓存区域,它包含在 Eden 空间内
  • 多线程同时分配内存时,使用 TLAB 可以避免一系列的非线程安全问题,同时还能提升内存分配的吞吐量,因此我们可以将这种内存分配方式称为快速分配策略
  • OpenJDK 衍生出来的 JVM 大都提供了 TLAB 设计

为什么要有 TLAB ?

  • 堆区是线程共享的,任何线程都可以访问到堆区中的共享数据
  • 由于对象实例的创建在 JVM 中非常频繁,因此在并发环境下从堆区中划分内存空间是线程不安全的
  • 为避免多个线程操作同一地址,需要使用加锁等机制,进而影响分配速度

尽管不是所有的对象实例都能够在 TLAB 中成功分配内存,但 JVM 确实是将 TLAB 作为内存分配的首选。

在程序中,可以通过 -XX:UseTLAB 设置是否开启 TLAB 空间。

默认情况下,TLAB 空间的内存非常小,仅占有整个 Eden 空间的 1%,我们可以通过 -XX:TLABWasteTargetPercent 设置 TLAB 空间所占用 Eden 空间的百分比大小。

一旦对象在 TLAB 空间分配内存失败时,JVM 就会尝试着通过使用加锁机制确保数据操作的原子性,从而直接在 Eden 空间中分配内存。

5.3 GC垃圾回收

如何判断一个对象是否可以回收?

  • 引用计数算法

给对象添加一个引用计数器,当对象增加一个引用时计数器加 1,引用失效时计数器减 1。引用计数为 0 的对象可被回收。

两个对象出现循环引用的情况下,此时引用计数器永远不为 0,导致无法对它们进行回收。

正因为循环引用的存在,因此 Java 虚拟机不使用引用计数算法。

  • 可达性分析算法

通过 GC Roots 作为起始点进行搜索,能够到达到的对象都是存活的,不可达的对象可被回收。

image

Java 虚拟机使用该算法来判断对象是否可被回收,在 Java 中 GC Roots 一般包含以下内容:

  • 虚拟机栈中引用的对象
  • 本地方法栈中引用的对象
  • 方法区中类静态属性引用的对象
  • 方法区中的常量引用的对象

对象有哪些引用类型?

无论是通过引用计算算法判断对象的引用数量,还是通过可达性分析算法判断对象是否可达,判定对象是否可被回收都与引用有关。

Java 具有四种强度不同的引用类型。

  • 强引用

被强引用关联的对象不会被回收。

使用 new 一个新对象的方式来创建强引用。

Object obj = new Object();
  • 软引用

被软引用关联的对象只有在内存不够的情况下才会被回收。

使用 SoftReference 类来创建软引用。

Object obj = new Object();
SoftReference<Object> sf = new SoftReference<Object>(obj);
obj = null;  // 使对象只被软引用关联
  • 弱引用

被弱引用关联的对象一定会被回收,也就是说它只能存活到下一次垃圾回收发生之前。

使用 WeakReference 类来实现弱引用。

Object obj = new Object();
WeakReference<Object> wf = new WeakReference<Object>(obj);
obj = null;
  • 虚引用

又称为幽灵引用或者幻影引用。一个对象是否有虚引用的存在,完全不会对其生存时间构成影响,也无法通过虚引用取得一个对象。

为一个对象设置虚引用关联的唯一目的就是能在这个对象被回收时收到一个系统通知。

使用 PhantomReference 来实现虚引用。

Object obj = new Object();
PhantomReference<Object> pf = new PhantomReference<Object>(obj);
obj = null;

有哪些基本的垃圾回收算法?

  • 标记 - 清除

image

将存活的对象进行标记,然后清理掉未被标记的对象。

不足:

  • 标记和清除过程效率都不高;
  • 会产生大量不连续的内存碎片,导致无法给大对象分配内存。
  • 标记 - 整理

image

让所有存活的对象都向一端移动,然后直接清理掉端边界以外的内存。

  • 复制

image

将内存划分为大小相等的两块,每次只使用其中一块,当这一块内存用完了就将还存活的对象复制到另一块上面,然后再把使用过的内存空间进行一次清理。

主要不足是只使用了内存的一半。

现在的商业虚拟机都采用这种收集算法来回收新生代,但是并不是将新生代划分为大小相等的两块,而是分为一块较大的 Eden 空间和两块较小的 Survivor 空间,每次使用 Eden 空间和其中一块 Survivor。在回收时,将 Eden 和 Survivor 中还存活着的对象一次性复制到另一块 Survivor 空间上,最后清理 Eden 和使用过的那一块 Survivor。

HotSpot 虚拟机的 Eden 和 Survivor 的大小比例默认为 8:1,保证了内存的利用率达到 90%。如果每次回收有多于 10% 的对象存活,那么一块 Survivor 空间就不够用了,此时需要依赖于老年代进行分配担保,也就是借用老年代的空间存储放不下的对象。

  • 分代收集

现在的商业虚拟机采用分代收集算法,它根据对象存活周期将内存划分为几块,不同块采用适当的收集算法。

一般将堆分为新生代和老年代。

  • 新生代使用: 复制算法
  • 老年代使用: 标记 - 清除 或者 标记 - 整理 算法

分代收集算法和分区收集算法区别?

img

  • 分代收集算法

当前主流 VM 垃圾收集都采用”分代收集”(Generational Collection)算法, 这种算法会根据 对象存活周期的不同将内存划分为几块, 如 JVM 中的 新生代、老年代、永久代,这样就可以根据 各年代特点分别采用最适当的 GC 算法

在新生代-复制算法:

每次垃圾收集都能发现大批对象已死, 只有少量存活. 因此选用复制算法, 只需要付出少量 存活对象的复制成本就可以完成收集

在老年代-标记整理算法:

因为对象存活率高、没有额外空间对它进行分配担保, 就必须采用“标记—清理”或“标 记—整理”算法来进行回收, 不必进行内存复制, 且直接腾出空闲内存.

  1. ParNew: 一款多线程的收集器,采用复制算法,主要工作在 Young 区,可以通过 -XX:ParallelGCThreads 参数来控制收集的线程数,整个过程都是 STW 的,常与 CMS 组合使用。
  2. CMS: 以获取最短回收停顿时间为目标,采用“标记-清除”算法,分 4 大步进行垃圾收集,其中初始标记和重新标记会 STW ,多数应用于互联网站或者 B/S 系统的服务器端上,JDK9 被标记弃用,JDK14 被删除。
  • 分区收集算法

分区算法则将整个堆空间划分为连续的不同小区间, 每个小区间独立使用, 独立回收. 这样做的 好处是可以控制一次回收多少个小区间 , 根据目标停顿时间, 每次合理地回收若干个小区间(而不是 整个堆), 从而减少一次 GC 所产生的停顿。

  1. G1: 一种服务器端的垃圾收集器,应用在多处理器和大容量内存环境中,在实现高吞吐量的同时,尽可能地满足垃圾收集暂停时间的要求。
  2. ZGC: JDK11 中推出的一款低延迟垃圾回收器,适用于大内存低延迟服务的内存管理和回收,SPECjbb 2015 基准测试,在 128G 的大堆下,最大停顿时间才 1.68 ms,停顿时间远胜于 G1 和 CMS。

什么是Minor GC、Major GC、Full GC?

JVM 在进行 GC 时,并非每次都对堆内存(新生代、老年代;方法区)区域一起回收的,大部分时候回收的都是指新生代。

针对 HotSpot VM 的实现,它里面的 GC 按照回收区域又分为两大类:部分收集(Partial GC),整堆收集(Full GC)

  • 部分收集:不是完整收集整个 Java 堆的垃圾收集。其中又分为:

    • 新生代收集(Minor GC/Young GC):只是新生代的垃圾收集

    • 老年代收集(Major GC/Old GC):只是老年代的垃圾收集

      • 目前,只有 CMS GC 会有单独收集老年代的行为
      • 很多时候 Major GC 会和 Full GC 混合使用,需要具体分辨是老年代回收还是整堆回收
    • 混合收集(Mixed GC):收集整个新生代以及部分老年代的垃圾收集

      • 目前只有 G1 GC 会有这种行为
  • 整堆收集(Full GC):收集整个 Java 堆和方法区的垃圾

说说JVM内存分配策略?

  • 对象优先在 Eden 分配

大多数情况下,对象在新生代 Eden 区分配,当 Eden 区空间不够时,发起 Minor GC。

  • 大对象直接进入老年代

大对象是指需要连续内存空间的对象,最典型的大对象是那种很长的字符串以及数组。

经常出现大对象会提前触发垃圾收集以获取足够的连续空间分配给大对象。

-XX:PretenureSizeThreshold,大于此值的对象直接在老年代分配,避免在 Eden 区和 Survivor 区之间的大量内存复制。

  • 长期存活的对象进入老年代

为对象定义年龄计数器,对象在 Eden 出生并经过 Minor GC 依然存活,将移动到 Survivor 中,年龄就增加 1 岁,增加到一定年龄则移动到老年代中。

-XX:MaxTenuringThreshold 用来定义年龄的阈值。

  • 动态对象年龄判定

虚拟机并不是永远地要求对象的年龄必须达到 MaxTenuringThreshold 才能晋升老年代,如果在 Survivor 中相同年龄所有对象大小的总和大于 Survivor 空间的一半,则年龄大于或等于该年龄的对象可以直接进入老年代,无需等到 MaxTenuringThreshold 中要求的年龄。

  • 空间分配担保

在发生 Minor GC 之前,虚拟机先检查老年代最大可用的连续空间是否大于新生代所有对象总空间,如果条件成立的话,那么 Minor GC 可以确认是安全的。

如果不成立的话虚拟机会查看 HandlePromotionFailure 设置值是否允许担保失败,如果允许那么就会继续检查老年代最大可用的连续空间是否大于历次晋升到老年代对象的平均大小,如果大于,将尝试着进行一次 Minor GC;如果小于,或者 HandlePromotionFailure 设置不允许冒险,那么就要进行一次 Full GC。

什么情况下会触发Full GC?

对于 Minor GC,其触发条件非常简单,当 Eden 空间满时,就将触发一次 Minor GC。而 Full GC 则相对复杂,有以下条件:

  • 调用 System.gc()

只是建议虚拟机执行 Full GC,但是虚拟机不一定真正去执行。不建议使用这种方式,而是让虚拟机管理内存。

  • 老年代空间不足

老年代空间不足的常见场景为前文所讲的大对象直接进入老年代、长期存活的对象进入老年代等。

为了避免以上原因引起的 Full GC,应当尽量不要创建过大的对象以及数组。除此之外,可以通过 -Xmn 虚拟机参数调大新生代的大小,让对象尽量在新生代被回收掉,不进入老年代。还可以通过 -XX:MaxTenuringThreshold 调大对象进入老年代的年龄,让对象在新生代多存活一段时间。

  • 空间分配担保失败

使用复制算法的 Minor GC 需要老年代的内存空间作担保,如果担保失败会执行一次 Full GC。

  • JDK 1.7 及以前的永久代空间不足

在 JDK 1.7 及以前,HotSpot 虚拟机中的方法区是用永久代实现的,永久代中存放的为一些 Class 的信息、常量、静态变量等数据。

当系统中要加载的类、反射的类和调用的方法较多时,永久代可能会被占满,在未配置为采用 CMS GC 的情况下也会执行 Full GC。如果经过 Full GC 仍然回收不了,那么虚拟机会抛出 java.lang.OutOfMemoryError。

为避免以上原因引起的 Full GC,可采用的方法为增大永久代空间或转为使用 CMS GC。

  • Concurrent Mode Failure

执行 CMS GC 的过程中同时有对象要放入老年代,而此时老年代空间不足(可能是 GC 过程中浮动垃圾过多导致暂时性的空间不足),便会报 Concurrent Mode Failure 错误,并触发 Full GC。

Hotspot中有哪些垃圾回收器?

image

以上是 HotSpot 虚拟机中的 7 个垃圾收集器,连线表示垃圾收集器可以配合使用。

  • 单线程与多线程: 单线程指的是垃圾收集器只使用一个线程进行收集,而多线程使用多个线程;
  • 串行与并行: 串行指的是垃圾收集器与用户程序交替执行,这意味着在执行垃圾收集的时候需要停顿用户程序;并形指的是垃圾收集器和用户程序同时执行。除了 CMS 和 G1 之外,其它垃圾收集器都是以串行的方式执行。
  1. Serial 收集器

image

Serial 翻译为串行,也就是说它以串行的方式执行。

它是单线程的收集器,只会使用一个线程进行垃圾收集工作。

它的优点是简单高效,对于单个 CPU 环境来说,由于没有线程交互的开销,因此拥有最高的单线程收集效率。

它是 Client 模式下的默认新生代收集器,因为在用户的桌面应用场景下,分配给虚拟机管理的内存一般来说不会很大。Serial 收集器收集几十兆甚至一两百兆的新生代停顿时间可以控制在一百多毫秒以内,只要不是太频繁,这点停顿是可以接受的。

  1. ParNew 收集器

image

它是 Serial 收集器的多线程版本。

是 Server 模式下的虚拟机首选新生代收集器,除了性能原因外,主要是因为除了 Serial 收集器,只有它能与 CMS 收集器配合工作。

默认开启的线程数量与 CPU 数量相同,可以使用 -XX:ParallelGCThreads 参数来设置线程数。

  1. Parallel Scavenge 收集器

与 ParNew 一样是多线程收集器。

其它收集器关注点是尽可能缩短垃圾收集时用户线程的停顿时间,而它的目标是达到一个可控制的吞吐量,它被称为“吞吐量优先”收集器。这里的吞吐量指 CPU 用于运行用户代码的时间占总时间的比值。

停顿时间越短就越适合需要与用户交互的程序,良好的响应速度能提升用户体验。而高吞吐量则可以高效率地利用 CPU 时间,尽快完成程序的运算任务,主要适合在后台运算而不需要太多交互的任务。

缩短停顿时间是以牺牲吞吐量和新生代空间来换取的: 新生代空间变小,垃圾回收变得频繁,导致吞吐量下降。

可以通过一个开关参数打开 GC 自适应的调节策略(GC Ergonomics),就不需要手动指定新生代的大小(-Xmn)、Eden 和 Survivor 区的比例、晋升老年代对象年龄等细节参数了。虚拟机会根据当前系统的运行情况收集性能监控信息,动态调整这些参数以提供最合适的停顿时间或者最大的吞吐量。

  1. Serial Old 收集器

image

是 Serial 收集器的老年代版本,也是给 Client 模式下的虚拟机使用。如果用在 Server 模式下,它有两大用途:

  • 在 JDK 1.5 以及之前版本(Parallel Old 诞生以前)中与 Parallel Scavenge 收集器搭配使用。
  • 作为 CMS 收集器的后备预案,在并发收集发生 Concurrent Mode Failure 时使用。
  1. Parallel Old 收集器

image

是 Parallel Scavenge 收集器的老年代版本。

在注重吞吐量以及 CPU 资源敏感的场合,都可以优先考虑 Parallel Scavenge 加 Parallel Old 收集器。

  1. CMS 收集器

image

CMS(Concurrent Mark Sweep),Mark Sweep 指的是标记 - 清除算法。

分为以下四个流程:

  • 初始标记: 仅仅只是标记一下 GC Roots 能直接关联到的对象,速度很快,需要停顿。
  • 并发标记: 进行 GC Roots Tracing 的过程,它在整个回收过程中耗时最长,不需要停顿。
  • 重新标记: 为了修正并发标记期间因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,需要停顿。
  • 并发清除: 不需要停顿。

在整个过程中耗时最长的并发标记和并发清除过程中,收集器线程都可以与用户线程一起工作,不需要进行停顿。

具有以下缺点:

  • 吞吐量低: 低停顿时间是以牺牲吞吐量为代价的,导致 CPU 利用率不够高。
  • 无法处理浮动垃圾,可能出现 Concurrent Mode Failure。浮动垃圾是指并发清除阶段由于用户线程继续运行而产生的垃圾,这部分垃圾只能到下一次 GC 时才能进行回收。由于浮动垃圾的存在,因此需要预留出一部分内存,意味着 CMS 收集不能像其它收集器那样等待老年代快满的时候再回收。如果预留的内存不够存放浮动垃圾,就会出现 Concurrent Mode Failure,这时虚拟机将临时启用 Serial Old 来替代 CMS。
  • 标记 - 清除算法导致的空间碎片,往往出现老年代空间剩余,但无法找到足够大连续空间来分配当前对象,不得不提前触发一次 Full GC。
  1. G1 收集器

G1(Garbage-First),它是一款面向服务端应用的垃圾收集器,在多 CPU 和大内存的场景下有很好的性能。HotSpot 开发团队赋予它的使命是未来可以替换掉 CMS 收集器。

堆被分为新生代和老年代,其它收集器进行收集的范围都是整个新生代或者老年代,而 G1 可以直接对新生代和老年代一起回收

image

G1 把堆划分成多个大小相等的独立区域(Region),新生代和老年代不再物理隔离。

image

通过引入 Region 的概念,从而将原来的一整块内存空间划分成多个的小空间,使得每个小空间可以单独进行垃圾回收。这种划分方法带来了很大的灵活性,使得可预测的停顿时间模型成为可能。通过记录每个 Region 垃圾回收时间以及回收所获得的空间(这两个值是通过过去回收的经验获得),并维护一个优先列表,每次根据允许的收集时间,优先回收价值最大的 Region。

每个 Region 都有一个 Remembered Set,用来记录该 Region 对象的引用对象所在的 Region。通过使用 Remembered Set,在做可达性分析的时候就可以避免全堆扫描。

image

如果不计算维护 Remembered Set 的操作,G1 收集器的运作大致可划分为以下几个步骤:

  • 初始标记
  • 并发标记
  • 最终标记: 为了修正在并发标记期间因用户程序继续运作而导致标记产生变动的那一部分标记记录,虚拟机将这段时间对象变化记录在线程的 Remembered Set Logs 里面,最终标记阶段需要把 Remembered Set Logs 的数据合并到 Remembered Set 中。这阶段需要停顿线程,但是可并行执行。
  • 筛选回收: 首先对各个 Region 中的回收价值和成本进行排序,根据用户所期望的 GC 停顿时间来制定回收计划。此阶段其实也可以做到与用户程序一起并发执行,但是因为只回收一部分 Region,时间是用户可控制的,而且停顿用户线程将大幅度提高收集效率。

具备如下特点:

  • 空间整合: 整体来看是基于“标记 - 整理”算法实现的收集器,从局部(两个 Region 之间)上来看是基于“复制”算法实现的,这意味着运行期间不会产生内存空间碎片。
  • 可预测的停顿: 能让使用者明确指定在一个长度为 M 毫秒的时间片段内,消耗在 GC 上的时间不得超过 N 毫秒。

5.4 问题排查

常见的Linux定位问题的工具?

  • 文本操作

    • 文本查找 - grep
    • 文本分析 - awk
    • 文本处理 - sed
  • 文件操作

    • 文件监听 - tail
    • 文件查找 - find
  • 网络和进程

    • 网络接口 - ifconfig
    • 防火墙 - iptables -L
    • 路由表 - route -n
    • netstat
  • 其它常用

    • 进程 ps -ef | grep java
    • 分区大小 df -h
    • 内存 free -m
    • 硬盘大小 fdisk -l |grep Disk
    • top
    • 环境变量 env

JDK自带的定位问题的工具?

  • jps jps是jdk提供的一个查看当前java进程的小工具, 可以看做是JavaVirtual Machine Process Status Tool的缩写。
jps –l # 输出输出完全的包名,应用主类名,jar的完全路径名 
  • jstack jstack是jdk自带的线程堆栈分析工具,使用该命令可以查看或导出 Java 应用程序中线程堆栈信息。
# 基本
jstack 2815
jstack -m 2815 # java和native c/c++框架的所有栈信息
jstack -l 2815 # 额外的锁信息列表,查看是否死锁
  • jinfo jinfo 是 JDK 自带的命令,可以用来查看正在运行的 java 应用程序的扩展参数,包括Java System属性和JVM命令行参数;也可以动态的修改正在运行的 JVM 一些参数。当系统崩溃时,jinfo可以从core文件里面知道崩溃的Java应用程序的配置信息
jinfo 2815 # 输出当前 jvm 进程的全部参数和系统属性
  • jmap 命令jmap是一个多功能的命令。它可以生成 java 程序的 dump 文件, 也可以查看堆内对象示例的统计信息、查看 ClassLoader 的信息以及 finalizer 队列。
# 查看堆的情况
jmap -heap 2815# dump
jmap -dump:live,format=b,file=/tmp/heap2.bin 2815
  • jstat jstat参数众多,但是使用一个就够了
jstat -gcutil 2815 1000 

如何使用在线调试工具Arthas?

举几个例子

  • 查看最繁忙的线程,以及是否有阻塞情况发生?

场景:我想看下查看最繁忙的线程,以及是否有阻塞情况发生? 常规查看线程,一般我们可以通过 top 等系统命令进行查看,但是那毕竟要很多个步骤,很麻烦。

thread -n 3 # 查看最繁忙的三个线程栈信息
thread  # 以直观的方式展现所有的线程情况
thread -b #找出当前阻塞其他线程的线程
  • 确认某个类是否已被系统加载?

场景:我新写了一个类或者一个方法,我想知道新写的代码是否被部署了?

# 即可以找到需要的类全路径,如果存在的话
sc *MyServlet

# 查看这个某个类所有的方法
sm pdai.tech.servlet.TestMyServlet *

# 查看某个方法的信息,如果存在的话
sm pdai.tech.servlet.TestMyServlet testMethod  
  • 如何查看一个class类的源码信息?

场景:我新修改的内容在方法内部,而上一个步骤只能看到方法,这时候可以反编译看下源码

# 直接反编译出java 源代码,包含一此额外信息的
jad pdai.tech.servlet.TestMyServlet
  • 如何跟踪某个方法的返回值、入参?

场景:我想看下我新加的方法在线运行的参数和返回值?

# 同时监控入参,返回值,及异常
watch pdai.tech.servlet.TestMyServlet testMethod "{params, returnObj, throwExp}" -e -x 2 
  • 如何看方法调用栈的信息?

场景:我想看下某个方法的调用栈的信息?

stack pdai.tech.servlet.TestMyServlet testMethod

运行此命令之后需要即时触发方法才会有响应的信息打印在控制台上

  • 找到最耗时的方法调用?

场景:testMethod这个方法入口响应很慢,如何找到最耗时的子调用?

# 执行的时候每个子调用的运行时长,可以找到最耗时的子调用。
stack pdai.tech.servlet.TestMyServlet testMethod

运行此命令之后需要即时触发方法才会有响应的信息打印在控制台上,然后一层一层看子调用。

  • 如何临时更改代码运行?

场景:我找到了问题所在,能否线上直接修改测试,而不需要在本地改了代码后,重新打包部署,然后重启观察效果?

# 先反编译出class源码
jad --source-only com.example.demo.arthas.user.UserController > /tmp/UserController.java  
​
# 然后使用外部工具编辑内容
mc /tmp/UserController.java -d /tmp  # 再编译成class# 最后,重新载入定义的类,就可以实时验证你的猜测了
redefine /tmp/com/example/demo/arthas/user/UserController.class

如上,是直接更改线上代码的方式,但是一般好像是编译不成功的。所以,最好是本地ide编译成 class文件后,再上传替换为好!

总之,已经完全不用重启和发布了!这个功能真的很方便,比起重启带来的代价,真的是不可比的。比如,重启时可能导致负载重分配,选主等等问题,就不是你能控制的了。

  • 我如何测试某个方法的性能问题?
monitor -c 5 demo.MathGame primeFactors

如何使用Idea的远程调试?

要让远程服务器运行的代码支持远程调试,则启动的时候必须加上特定的JVM参数,这些参数是:

-Xdebug -Xrunjdwp:transport=dt_socket,suspend=n,server=y,address=127.0.0.1:5555

复杂综合类型问题的定位思路?

img

6 Java 新版本

Java 8版本特性,及Java8+版本特性。

6.1 Java 8 特性

什么是函数式编程?Lambda表达式?

  • 函数式编程

面向对象编程是对数据进行抽象;函数式编程是对行为进行抽象。

核心思想: 使用不可变值和函数,函数对一个值进行处理,映射成另一个值。

  • Lambda表达式

lambda表达式仅能放入如下代码: 预定义使用了 @Functional 注释的函数式接口,自带一个抽象函数的方法,或者SAM(Single Abstract Method 单个抽象方法)类型。这些称为lambda表达式的目标类型,可以用作返回类型,或lambda目标代码的参数。例如,若一个方法接收Runnable、Comparable或者 Callable 接口,都有单个抽象方法,可以传入lambda表达式。类似的,如果一个方法接受声明于 java.util.function 包内的接口,例如 Predicate、Function、Consumer 或 Supplier,那么可以向其传lambda表达式

Stream中常用方法?

  • stream(), parallelStream()
  • filter()
  • findAny() findFirst()
  • sort
  • forEach void
  • map(), reduce()
  • flatMap() - 将多个Stream连接成一个Stream
  • collect(Collectors.toList())
  • distinct, limit
  • count
  • min, max, summaryStatistics

什么是FunctionalInterface?

@Documented
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.TYPE)
public @interface FunctionalInterface{}
  • interface做注解的注解类型,被定义成java语言规

  • 一个被它注解的接口只能有一个抽象方法,有两种例外

  • 第一是接口允许有实现的方法,这种实现的方法是用default关键字来标记的(java反射中java.lang.reflect.Method#isDefault()方法用来判断是否是default方法)

  • 第二如果声明的方法和java.lang.Object中的某个方法一样,它可以不当做未实现的方法,不违背这个原则: 一个被它注解的接口只能有一个抽象方法, 比如: java public interface Comparator<T> { int compare(T o1, T o2); boolean equals(Object obj); }

  • 如果一个类型被这个注解修饰,那么编译器会要求这个类型必须满足如下条件:

    • 这个类型必须是一个interface,而不是其他的注解类型、枚举enum或者类class
    • 这个类型必须满足function interface的所有要求,如你个包含两个抽象方法的接口增加这个注解,会有编译错误。
  • 编译器会自动把满足function interface要求的接口自动识别为function interface。

如何自定义函数接口?

@FunctionalInterface
public interface IMyInterface {
    void study();
}
​
public class TestIMyInterface {
    public static void main(String[] args) {
        IMyInterface iMyInterface = () -> System.out.println("I like study");
        iMyInterface.study();
    }
}

内置的四大函数接口及使用?

  • 消费型接口: Consumer< T> void accept(T t)有参数,无返回值的抽象方法
Consumer<Person> greeter = (p) -> System.out.println("Hello, " + p.firstName);
greeter.accept(new Person("Luke", "Skywalker"));
  • 供给型接口: Supplier < T> T get() 无参有返回值的抽象方法

以stream().collect(Collector<? super T, A, R> collector)为例:

比如:

Supplier<Person> personSupplier = Person::new;
personSupplier.get();   // new Person
  • 断定型接口: Predicate boolean test(T t):有参,但是返回值类型是固定的boolean

比如: steam().filter()中参数就是Predicate

Predicate<String> predicate = (s) -> s.length() > 0;
​
predicate.test("foo");              // true
predicate.negate().test("foo");     // false
​
Predicate<Boolean> nonNull = Objects::nonNull;
Predicate<Boolean> isNull = Objects::isNull;
​
Predicate<String> isEmpty = String::isEmpty;
Predicate<String> isNotEmpty = isEmpty.negate();
  • 函数型接口: Function<T,R> R apply(T t)有参有返回值的抽象方法

比如: steam().map() 中参数就是Function<? super T, ? extends R>;reduce()中参数BinaryOperator (ps: BinaryOperator extends BiFunction<T,T,T>)

Function<String, Integer> toInteger = Integer::valueOf;
Function<String, String> backToString = toInteger.andThen(String::valueOf);
​
backToString.apply("123");     // "123"

Optional要解决什么问题?

在调用一个方法得到了返回值却不能直接将返回值作为参数去调用别的方法,我们首先要判断这个返回值是否为null,只有在非空的前提下才能将其作为其他方法的参数。Java 8引入了一个新的Optional类:这是一个可以为null的容器对象,如果值存在则isPresent()方法会返回true,调用get()方法会返回该对象。

如何使用Optional来解决嵌套对象的判空问题?

假设我们有一个像这样的类层次结构:

class Outer {
    Nested nested;
    Nested getNested() {
        return nested;
    }
}
class Nested {
    Inner inner;
    Inner getInner() {
        return inner;
    }
}
class Inner {
    String foo;
    String getFoo() {
        return foo;
    }
}

解决这种结构的深层嵌套路径是有点麻烦的。我们必须编写一堆 null 检查来确保不会导致一个 NullPointerException:

Outer outer = new Outer();
if (outer != null && outer.nested != null && outer.nested.inner != null) {
    System.out.println(outer.nested.inner.foo);
}

我们可以通过利用 Java 8 的 Optional 类型来摆脱所有这些 null 检查。map 方法接收一个 Function 类型的 lambda 表达式,并自动将每个 function 的结果包装成一个 Optional 对象。这使我们能够在一行中进行多个 map 操作。Null 检查是在底层自动处理的。

Optional.of(new Outer())
    .map(Outer::getNested)
    .map(Nested::getInner)
    .map(Inner::getFoo)
    .ifPresent(System.out::println);

还有一种实现相同作用的方式就是通过利用一个 supplier 函数来解决嵌套路径的问题:

Outer obj = new Outer();
resolve(() -> obj.getNested().getInner().getFoo())
    .ifPresent(System.out::println);

什么是默认方法,为什么要有默认方法?

就是接口可以有实现方法,而且不需要实现类去实现其方法。只需在方法名前面加个default关键字即可。

public interface A {
    default void foo(){
       System.out.println("Calling A.foo()");
    }
}
​
public class Clazz implements A {
    public static void main(String[] args){
       Clazz clazz = new Clazz();
       clazz.foo();//调用A.foo()
    }
}
  • 为什么出现默认方法

首先,之前的接口是个双刃剑,好处是面向抽象而不是面向具体编程,缺陷是,当需要修改接口时候,需要修改全部实现该接口的类,目前的java 8之前的集合框架没有foreach方法,通常能想到的解决办法是在JDK里给相关的接口添加新的方法及实现。然而,对于已经发布的版本,是没法在给接口添加新方法的同时不影响已有的实现。所以引进的默认方法。他们的目的是为了解决接口的修改与现有的实现不兼容的问题。

什么是类型注解?

类型注解被用来支持在Java的程序中做强类型检查。配合插件式的check framework,可以在编译的时候检测出runtime error,以提高代码质量。这就是类型注解的作用了。

  1. 在java 8之前,注解只能是在声明的地方所使用,比如类,方法,属性;
  2. java 8里面,注解可以应用在任何地方,比如:

创建类实例

new @Interned MyObject();

类型映射

myString = (@NonNull String) str;

implements 语句中

class UnmodifiableList<T> implements @Readonly List<@Readonly T> { … }

throw exception声明

void monitorTemperature() throws @Critical TemperatureException { … }

需要注意的是,类型注解只是语法而不是语义,并不会影响java的编译时间,加载时间,以及运行时间,也就是说,编译成class文件的时候并不包含类型注解

什么是重复注解?

允许在同一申明类型(类,属性,或方法)的多次使用同一个注解

  • JDK8之前

java 8之前也有重复使用注解的解决方案,但可读性不是很好,比如下面的代码:

public @interface Authority {
     String role();
}
​
public @interface Authorities {
    Authority[] value();
}
​
public class RepeatAnnotationUseOldVersion {
​
    @Authorities({@Authority(role="Admin"),@Authority(role="Manager")})
    public void doSomeThing(){
    }
}

由另一个注解来存储重复注解,在使用时候,用存储注解Authorities来扩展重复注解。

  • Jdk8重复注解

我们再来看看java 8里面的做法:

@Repeatable(Authorities.class)
public @interface Authority {
     String role();
}
​
public @interface Authorities {
    Authority[] value();
}
​
public class RepeatAnnotationUseNewVersion {
    @Authority(role="Admin")
    @Authority(role="Manager")
    public void doSomeThing(){ }
}

不同的地方是,创建重复注解Authority时,加上@Repeatable,指向存储注解Authorities,在使用时候,直接可以重复使用Authority注解。从上面例子看出,java 8里面做法更适合常规的思维,可读性强一点

6.2 Java 9+ 特性

Java 9后续版本发布是按照什么样的发布策略呢?

Java现在发布的版本很快,每年两个,但是真正会被大规模使用的是三年一个的TLS版本。@pdai

  • 每3年发布一个TLS,长期维护版本。意味着Java 8 ,Java 11, Java 17 才可能被大规模使用。
  • 每年发布两个正式版本,分别是3月份和9月份。

Java 9后续新版本中你知道哪些?

能够举几个即可:

  • Java10 - 并行全垃圾回收器 G1

大家如果接触过 Java 性能调优工作,应该会知道,调优的最终目标是通过参数设置来达到快速、低延时的内存垃圾回收以提高应用吞吐量,尽可能的避免因内存回收不及时而触发的完整 GC(Full GC 会带来应用出现卡顿)。

G1 垃圾回收器是 Java 9 中 Hotspot 的默认垃圾回收器,是以一种低延时的垃圾回收器来设计的,旨在避免进行 Full GC,但是当并发收集无法快速回收内存时,会触发垃圾回收器回退进行 Full GC。之前 Java 版本中的 G1 垃圾回收器执行 GC 时采用的是基于单线程标记扫描压缩算法(mark-sweep-compact)。为了最大限度地减少 Full GC 造成的应用停顿的影响,Java 10 中将为 G1 引入多线程并行 GC,同时会使用与年轻代回收和混合回收相同的并行工作线程数量,从而减少了 Full GC 的发生,以带来更好的性能提升、更大的吞吐量。

Java 10 中将采用并行化 mark-sweep-compact 算法,并使用与年轻代回收和混合回收相同数量的线程。具体并行 GC 线程数量可以通过: -XX:ParallelGCThreads 参数来调节,但这也会影响用于年轻代和混合收集的工作线程数。

  • Java11 - ZGC:可伸缩低延迟垃圾收集器

ZGC 即 Z Garbage Collector(垃圾收集器或垃圾回收器),这应该是 Java 11 中最为瞩目的特性,没有之一。ZGC 是一个可伸缩的、低延迟的垃圾收集器,主要为了满足如下目标进行设计:

  1. GC 停顿时间不超过 10ms
  2. 即能处理几百 MB 的小堆,也能处理几个 TB 的大堆
  3. 应用吞吐能力不会下降超过 15%(与 G1 回收算法相比)
  4. 方便在此基础上引入新的 GC 特性和利用 colord
  5. 针以及 Load barriers 优化奠定基础
  6. 当前只支持 Linux/x64 位平台

停顿时间在 10ms 以下,10ms 其实是一个很保守的数据,即便是 10ms 这个数据,也是 GC 调优几乎达不到的极值。根据 SPECjbb 2015 的基准测试,128G 的大堆下最大停顿时间才 1.68ms,远低于 10ms,和 G1 算法相比,改进非常明显。

img

  • Java 14 - Switch 表达式(正式版)

switch 表达式在之前的 Java 12 和 Java 13 中都是处于预览阶段,而在这次更新的 Java 14 中,终于成为稳定版本,能够正式可用。

switch 表达式带来的不仅仅是编码上的简洁、流畅,也精简了 switch 语句的使用方式,同时也兼容之前的 switch 语句的使用;之前使用 switch 语句时,在每个分支结束之前,往往都需要加上 break 关键字进行分支跳出,以防 switch 语句一直往后执行到整个 switch 语句结束,由此造成一些意想不到的问题。switch 语句一般使用冒号 :来作为语句分支代码的开始,而 switch 表达式则提供了新的分支切换方式,即 -> 符号右则表达式方法体在执行完分支方法之后,自动结束 switch 分支,同时 -> 右则方法块中可以是表达式、代码块或者是手动抛出的异常。以往的 switch 语句写法如下:

int dayOfWeek;
switch (day) {
    case MONDAY:
    case FRIDAY:
    case SUNDAY:
        dayOfWeek = 6;
        break;
    case TUESDAY:
        dayOfWeek = 7;
        break;
    case THURSDAY:
    case SATURDAY:
        dayOfWeek = 8;
        break;
    case WEDNESDAY:
        dayOfWeek = 9;
        break;
    default:
        dayOfWeek = 0;
        break;
}

而现在 Java 14 可以使用 switch 表达式正式版之后,上面语句可以转换为下列写法:

int dayOfWeek = switch (day) {
    case MONDAY, FRIDAY, SUNDAY -> 6;
    case TUESDAY                -> 7;
    case THURSDAY, SATURDAY     -> 8;
case WEDNESDAY              -> 9;
    default              -> 0;
​
};

很明显,switch 表达式将之前 switch 语句从编码方式上简化了不少,但是还是需要注意下面几点:

  1. 需要保持与之前 switch 语句同样的 case 分支情况。
  2. 之前需要用变量来接收返回值,而现在直接使用 yield 关键字来返回 case 分支需要返回的结果。
  3. 现在的 switch 表达式中不再需要显式地使用 return、break 或者 continue 来跳出当前分支。
  4. 现在不需要像之前一样,在每个分支结束之前加上 break 关键字来结束当前分支,如果不加,则会默认往后执行,直到遇到 break 关键字或者整个 switch 语句结束,在 Java 14 表达式中,表达式默认执行完之后自动跳出,不会继续往后执行。
  5. 对于多个相同的 case 方法块,可以将 case 条件并列,而不需要像之前一样,通过每个 case 后面故意不加 break 关键字来使用相同方法块。

使用 switch 表达式来替换之前的 switch 语句,确实精简了不少代码,提高了编码效率,同时也可以规避一些可能由于不太经意而出现的意想不到的情况,可见 Java 在提高使用者编码效率、编码体验和简化使用方面一直在不停的努力中,同时也期待未来有更多的类似 lambda、switch 表达式这样的新特性出来。

  • Java 14 - Records

在 Java 14 中引入了 Record 类型,其效果有些类似 Lombok 的 @Data 注解、Kotlin 中的 data class,但是又不尽完全相同,它们的共同点都是类的部分或者全部可以直接在类头中定义、描述,并且这个类只用于存储数据而已。对于 Record 类型,具体可以用下面代码来说明:

public record Person(String name, int age) {
    public static String address;
​
    public String getName() {
        return name;
    }
}

对上述代码进行编译,然后反编译之后可以看到如下结果:

public final class Person extends java.lang.Record {
    private final java.lang.String name;
    private final java.lang.String age;
​
    public Person(java.lang.String name, java.lang.String age) { /* compiled code */ }
​
    public java.lang.String getName() { /* compiled code */ }
​
    public java.lang.String toString() { /* compiled code */ }
​
    public final int hashCode() { /* compiled code */ }
​
    public final boolean equals(java.lang.Object o) { /* compiled code */ }
​
    public java.lang.String name() { /* compiled code */ }
​
    public java.lang.String age() { /* compiled code */ }
}

7 数据结构和算法

数据结构和算法

7.1 数据结构基础

如何理解基础的数据结构?

避免孤立的学习知识点,要关联学习。比如实际应用当中,我们经常使用的是查找,排序以及增删改,这在我们的各种管理系统、数据库系统、操作系统等当中,十分常用,我们通过这个线索将知识点串联起来:

  • 数组的下标寻址十分迅速,但计算机的内存是有限的,故数组的长度也是有限的,实际应用当中的数据往往十分庞大;而且无序数组的查找最坏情况需要遍历整个数组;后来人们提出了二分查找,二分查找要求数组的构造一定有序,二分法查找解决了普通数组查找复杂度过高的问题。任何一种数组无法解决的问题就是插入、删除操作比较复杂,因此,在一个增删查改比较频繁的数据结构中,数组不会被优先考虑
  • 普通链表由于它的结构特点被证明根本不适合进行查找
  • 哈希表是数组和链表的折中,同时它的设计依赖散列函数的设计,数组不能无限长、链表也不适合查找,所以也不适合大规模的查找
  • 二叉查找树因为可能退化成链表,同样不适合进行查找
  • AVL树是为了解决二叉查找树可能退化成链表问题。AVL树是严格的平衡二叉树,平衡条件必须满足(所有节点的左右子树高度差的绝对值不超过1)。不管我们是执行插入还是删除操作,只要不满足上面的条件,就要通过旋转来保持平衡,而旋转是非常耗时的,由此我们可以知道AVL树适合用于插入与删除次数比较少,但查找多的情况。
  • 红黑树是二叉查找树和AVL树的折中。它是一种弱平衡二叉树,但在每个节点增加一个存储位表示节点的颜色,可以是红或黑(非红即黑)。通过对任何一条从根到叶子的路径上各个节点着色的方式的限制,红黑树确保没有一条路径会比其它路径长出两倍,因此,红黑树是一种弱平衡二叉树(由于是弱平衡,可以看到,在相同的节点情况下,AVL树的高度低于红黑树),相对于要求严格的AVL树来说,它的旋转次数少,所以对于搜索,插入,删除操作较多的情况下,我们就用红黑树。
  • 多路查找树 是大规模数据存储中,实现索引查询这样一个实际背景下,树节点存储的元素数量是有限的(如果元素数量非常多的话,查找就退化成节点内部的线性查找了),这样导致二叉查找树结构由于树的深度过大而造成磁盘I/O读写过于频繁,进而导致查询效率低下。
  • B树与自平衡二叉查找树不同,B树适用于读写相对大的数据块的存储系统,例如磁盘。它的应用是文件系统及部分非关系型数据库索引。
  • B+树在B树基础上,为叶子结点增加链表指针(B树+叶子有序链表),所有关键字都在叶子结点 中出现,非叶子结点作为叶子结点的索引;B+树总是到叶子结点才命中。通常用于关系型数据库(如Mysql)和操作系统的文件系统中。
  • B*树是B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针, 在B+树基础上,为非叶子结点也增加链表指针,将结点的最低利用率从1/2提高到2/3。
  • R树是用来做空间数据存储的树状数据结构。例如给地理位置,矩形和多边形这类多维数据建立索引。
  • Trie树是自然语言处理中最常用的数据结构,很多字符串处理任务都会用到。Trie树本身是一种有限状态自动机,还有很多变体。什么模式匹配、正则表达式,都与这有关。

7.2 算法思想

有哪些常见的算法思想?

  • 分治算法 :分治算法的基本思想是将一个规模为N的问题分解为K个规模较小的子问题,这些子问题相互独立且与原问题性质相同。求出子问题的解,就可得到原问题的解
  • 动态规划算法: 通常用于求解具有某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。和分治算法最大的差别:适用于动态规划算法求解的问题经过分解后得到的子问题往往不是相互独立的,而是下一个子阶段的求解是建立在上一个子阶段的解的基础上的。
  • 贪心算法: 保证每次操作都是局部最优的,并且最后得到的结果是全局最优的
  • 二分法: 比如重要的二分法,比如二分查找;二分查找也称折半查找(Binary Search),它是一种效率较高的查找方法。但是,折半查找要求线性表必须采用顺序存储结构,而且表中元素按关键字有序排列。
  • 搜索算法: 主要包含BFS,DFS
  • Backtracking(回溯) : 属于 DFS, 回溯算法实际上一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法

7.3 常见排序算法

有哪些常见的排序算法?

在综合复杂度及稳定性情况下,通常希尔, 快排和 归并需要重点掌握

img

  • 冒泡排序

    (Bubble Sort)

    • 它是一种较简单的排序算法。它会遍历若干次要排序的数列,每次遍历时,它都会从前往后依次的比较相邻两个数的大小;如果前者比后者大,则交换它们的位置。这样,一次遍历之后,最大的元素就在数列的末尾! 采用相同的方法再次遍历时,第二大的元素就被排列在最大元素之前。重复此操作,直到整个数列都有序为止
  • 快速排序

    (Quick Sort)

    • 它的基本思想是: 选择一个基准数,通过一趟排序将要排序的数据分割成独立的两部分;其中一部分的所有数据都比另外一部分的所有数据都要小。然后,再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
  • 插入排序

    (Insertion Sort)

    • 直接插入排序(Straight Insertion Sort)的基本思想是: 把n个待排序的元素看成为一个有序表和一个无序表。开始时有序表中只包含1个元素,无序表中包含有n-1个元素,排序过程中每次从无序表中取出第一个元素,将它插入到有序表中的适当位置,使之成为新的有序表,重复n-1次可完成排序过程。
  • Shell排序

    (Shell Sort)

    • 希尔排序实质上是一种分组插入方法。它的基本思想是: 对于n个待排序的数列,取一个小于n的整数gap(gap被称为步长)将待排序元素分成若干个组子序列,所有距离为gap的倍数的记录放在同一个组中;然后,对各组内的元素进行直接插入排序。 这一趟排序完成之后,每一个组的元素都是有序的。然后减小gap的值,并重复执行上述的分组和排序。重复这样的操作,当gap=1时,整个数列就是有序的。
  • 选择排序

    (Selection sort)

    • 它的基本思想是: 首先在未排序的数列中找到最小(or最大)元素,然后将其存放到数列的起始位置;接着,再从剩余未排序的元素中继续寻找最小(or最大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。
  • 堆排序

    (Heap Sort)

    • 堆排序是指利用堆这种数据结构所设计的一种排序算法。堆是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。
  • 归并排序

    (Merge Sort)

    • 将两个的有序数列合并成一个有序数列,我们称之为"归并"。归并排序(Merge Sort)就是利用归并思想对数列进行排序。
  • 桶排序

    (Bucket Sort)

    • 桶排序(Bucket Sort)的原理很简单,将数组分到有限数量的桶子里。每个桶子再个别排序(有可能再使用别的排序算法或是以递归方式继续使用桶排序进行排序)
  • 基数排序

    (Radix Sort)

    • 它的基本思想是: 将整数按位数切割成不同的数字,然后按每个位数分别比较。具体做法是: 将所有待比较数值统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后, 数列就变成一个有序序列

7.4 大数据处理算法

何谓海量数据处理? 解决的思路?

所谓海量数据处理,无非就是基于海量数据上的存储、处理、操作。何谓海量,就是数据量太大,所以导致要么是无法在较短时间内迅速解决,要么是数据太大,导致无法一次性装入内存。

那解决办法呢?

  • 针对时间: 我们可以采用巧妙的算法搭配合适的数据结构,如Bloom filter/Hash/bit-map/堆/数据库或倒排索引/trie树;
  • 针对空间: 无非就一个办法: 大而化小,分而治之(hash映射);
  • 集群|分布式: 通俗点来讲,单机就是处理装载数据的机器有限(只要考虑cpu,内存,硬盘的数据交互); 而集群适合分布式处理,并行计算(更多考虑节点和节点间的数据交互)。

大数据处理之分治思想?

分而治之/hash映射 + hash统计 + 堆/快速/归并排序,说白了,就是先映射,而后统计,最后排序:

  • 分而治之/hash映射: 针对数据太大,内存受限,只能是: 把大文件化成(取模映射)小文件,即16字方针: 大而化小,各个击破,缩小规模,逐个解决
  • hash_map统计: 当大文件转化了小文件,那么我们便可以采用常规的hash_map(ip,value)来进行频率统计。
  • 堆/快速排序: 统计完了之后,便进行排序(可采取堆排序),得到次数最多的IP。

海量日志数据,提取出某日访问百度次数最多的那个IP?

分析: “首先是这一天,并且是访问百度的日志中的IP取出来,逐个写入到一个大文件中。注意到IP是32位的,最多有个2^32个IP。同样可以采用映射的方法,比如%1000,把整个大文件映射为1000个小文件,再找出每个小文中出现频率最大的IP(可以采用hash_map对那1000个文件中的所有IP进行频率统计,然后依次找出各个文件中频率最大的那个IP)及相应的频率。然后再在这1000个最大的IP中,找出那个频率最大的IP,即为所求。”

关于本题,还有几个问题,如下:

  • Hash取模是一种等价映射,不会存在同一个元素分散到不同小文件中的情况,即这里采用的是mod1000算法,那么相同的IP在hash取模后,只可能落在同一个文件中,不可能被分散的。因为如果两个IP相等,那么经过Hash(IP)之后的哈希值是相同的,将此哈希值取模(如模1000),必定仍然相等。
  • 那到底什么是hash映射呢? 简单来说,就是为了便于计算机在有限的内存中处理big数据,从而通过一种映射散列的方式让数据均匀分布在对应的内存位置(如大数据通过取余的方式映射成小树存放在内存中,或大文件映射成多个小文件),而这个映射散列方式便是我们通常所说的hash函数,设计的好的hash函数能让数据均匀分布而减少冲突。尽管数据映射到了另外一些不同的位置,但数据还是原来的数据,只是代替和表示这些原始数据的形式发生了变化而已。

寻找热门查询,300万个查询字符串中统计最热门的10个查询?

原题: 搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。假设目前有一千万个记录(这些查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个。一个查询串的重复度越高,说明查询它的用户越多,也就是越热门),请你统计最热门的10个查询串,要求使用的内存不能超过1G。

解答: 由上面第1题,我们知道,数据大则划为小的,如如一亿个Ip求Top 10,可先%1000将ip分到1000个小文件中去,并保证一种ip只出现在一个文件中,再对每个小文件中的ip进行hashmap计数统计并按数量排序,最后归并或者最小堆依次处理每个小文件的top10以得到最后的结。

但如果数据规模比较小,能一次性装入内存呢?比如这第2题,虽然有一千万个Query,但是由于重复度比较高,因此事实上只有300万的Query,每个Query255Byte,因此我们可以考虑把他们都放进内存中去(300万个字符串假设没有重复,都是最大长度,那么最多占用内存3M*1K/4=0.75G。所以可以将所有字符串都存放在内存中进行处理),而现在只是需要一个合适的数据结构,在这里,HashTable绝对是我们优先的选择。

所以我们放弃分而治之/hash映射的步骤,直接上hash统计,然后排序。So,针对此类典型的TOP K问题,采取的对策往往是: hashmap + 堆。如下所示:

  • hash_map统计: 先对这批海量数据预处理。具体方法是: 维护一个Key为Query字串,Value为该Query出现次数的HashTable,即hash_map(Query,Value),每次读取一个Query,如果该字串不在Table中,那么加入该字串,并且将Value值设为1;如果该字串在Table中,那么将该字串的计数加一即可。最终我们在O(N)的时间复杂度内用Hash表完成了统计; 堆排序: 第二步、借助堆这个数据结构,找出Top K,时间复杂度为N‘logK。即借助堆结构,我们可以在log量级的时间内查找和调整/移动。因此,维护一个K(该题目中是10)大小的小根堆,然后遍历300万的Query,分别和根元素进行对比。所以,我们最终的时间复杂度是: O(N) + N' * O(logK),(N为1000万,N’为300万)。

别忘了这篇文章中所述的堆排序思路: “维护k个元素的最小堆,即用容量为k的最小堆存储最先遍历到的k个数,并假设它们即是最大的k个数,建堆费时O(k),并调整堆(费时O(logk))后,有k1>k2>...kmin(kmin设为小顶堆中最小元素)。继续遍历数列,每次遍历一个元素x,与堆顶元素比较,若x>kmin,则更新堆(x入堆,用时logk),否则不更新堆。这样下来,总费时O(klogk+(n-k) logk)=O(n*logk)。此方法得益于在堆中,查找等各项操作时间复杂度均为logk。”--第三章续、Top K算法问题的实现。

当然,你也可以采用trie树,关键字域存该查询串出现的次数,没有出现为0。最后用10个元素的最小推来对出现频率进行排序。

有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M。返回频数最高的100个词?

  • 分而治之/hash映射: 顺序读文件中,对于每个词x,取hash(x)%5000,然后按照该值存到5000个小文件(记为x0,x1,...x4999)中。这样每个文件大概是200k左右。如果其中的有的文件超过了1M大小,还可以按照类似的方法继续往下分,直到分解得到的小文件的大小都不超过1M。
  • hash_map统计: 对每个小文件,采用trie树/hash_map等统计每个文件中出现的词以及相应的频率。
  • 堆/归并排序: 取出出现频率最大的100个词(可以用含100个结点的最小堆)后,再把100个词及相应的频率存入文件,这样又得到了5000个文件。最后就是把这5000个文件进行归并(类似于归并排序)的过程了。

海量数据分布在100台电脑中,想个办法高效统计出这批数据的TOP10?

如果每个数据元素只出现一次,而且只出现在某一台机器中,那么可以采取以下步骤统计出现次数TOP10的数据元素:

  • 堆排序: 在每台电脑上求出TOP10,可以采用包含10个元素的堆完成(TOP10小,用最大堆,TOP10大,用最小堆,比如求TOP10大,我们首先取前10个元素调整成最小堆,如果发现,然后扫描后面的数据,并与堆顶元素比较,如果比堆顶元素大,那么用该元素替换堆顶,然后再调整为最小堆。最后堆中的元素就是TOP10大)。 求出每台电脑上的TOP10后,然后把这100台电脑上的TOP10组合起来,共1000个数据,再利用上面类似的方法求出TOP10就可以了。

但如果同一个元素重复出现在不同的电脑中呢,如下例子所述, 这个时候,你可以有两种方法:

  • 遍历一遍所有数据,重新hash取摸,如此使得同一个元素只出现在单独的一台电脑中,然后采用上面所说的方法,统计每台电脑中各个元素的出现次数找出TOP10,继而组合100台电脑上的TOP10,找出最终的TOP10。
  • 或者,暴力求解: 直接统计统计每台电脑中各个元素的出现次数,然后把同一个元素在不同机器中的出现次数相加,最终从所有数据中找出TOP10。

有10个文件,每个文件1G,每个文件的每一行存放的都是用户的query,每个文件的query都可能重复。要求你按照query的频度排序?

方案1:

  • hash映射: 顺序读取10个文件,按照hash(query)%10的结果将query写入到另外10个文件(记为a0,a1,..a9)中。这样新生成的文件每个的大小大约也1G(假设hash函数是随机的)。
  • hash_map统计: 找一台内存在2G左右的机器,依次对用hash_map(query, query_count)来统计每个query出现的次数。注: hash_map(query,query_count)是用来统计每个query的出现次数,不是存储他们的值,出现一次,则count+1。
  • 堆/快速/归并排序: 利用快速/堆/归并排序按照出现次数进行排序,将排序好的query和对应的query_cout输出到文件中,这样得到了10个排好序的文件(记为)。最后,对这10个文件进行归并排序(内排序与外排序相结合)。

方案2: 一般query的总量是有限的,只是重复的次数比较多而已,可能对于所有的query,一次性就可以加入到内存了。这样,我们就可以采用trie树/hash_map等直接来统计每个query出现的次数,然后按出现次数做快速/堆/归并排序就可以了。

方案3: 与方案1类似,但在做完hash,分成多个文件后,可以交给多个文件来处理,采用分布式的架构来处理(比如MapReduce),最后再进行合并。

给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url?

可以估计每个文件安的大小为5G×64=320G,远远大于内存限制的4G。所以不可能将其完全加载到内存中处理。考虑采取分而治之的方法。

  • 分而治之/hash映射: 遍历文件a,对每个url求取,然后根据所取得的值将url分别存储到1000个小文件(记为,这里漏写个了a1)中。这样每个小文件的大约为300M。遍历文件b,采取和a相同的方式将url分别存储到1000小文件中(记为)。这样处理后,所有可能相同的url都在对应的小文件()中,不对应的小文件不可能有相同的url。然后我们只要求出1000对小文件中相同的url即可。
  • hash_set统计: 求每对小文件中相同的url时,可以把其中一个小文件的url存储到hash_set中。然后遍历另一个小文件的每个url,看其是否在刚才构建的hash_set中,如果是,那么就是共同的url,存到文件里面就可以了。

如果允许有一定的错误率,可以使用Bloom filter,4G内存大概可以表示340亿bit。将其中一个文件中的url使用Bloom filter映射为这340亿bit,然后挨个读取另外一个文件的url,检查是否与Bloom filter,如果是,那么该url应该是共同的url(注意会有一定的错误率)。”

怎么在海量数据中找出重复次数最多的一个?

方案: 先做hash,然后求模映射为小文件,求出每个小文件中重复次数最多的一个,并记录重复次数。然后找出上一步求出的数据中重复次数最多的一个就是所求(具体参考前面的题)。

上千万或上亿数据(有重复),统计其中出现次数最多的前N个数据?

方案: 上千万或上亿的数据,现在的机器的内存应该能存下。所以考虑采用hash_map/搜索二叉树/红黑树等来进行统计次数。然后利用堆取出前N个出现次数最多的数据。

一个文本文件,大约有一万行,每行一个词,要求统计出其中最频繁出现的前10个词,请给出思想,给出时间复杂度分析?

方案1: 如果文件比较大,无法一次性读入内存,可以采用hash取模的方法,将大文件分解为多个小文件,对于单个小文件利用hash_map统计出每个小文件中10个最常出现的词,然后再进行归并处理,找出最终的10个最常出现的词。

方案2: 通过hash取模将大文件分解为多个小文件后,除了可以用hash_map统计出每个小文件中10个最常出现的词,也可以用trie树统计每个词出现的次数,时间复杂度是O(nle)(le表示单词的平准长度),最终同样找出出现最频繁的前10个词(可用堆来实现),时间复杂度是O(nlg10)。

一个文本文件,找出前10个经常出现的词,但这次文件比较长,说是上亿行或十亿行,总之无法一次读入内存,问最优解?

方案1: 首先根据用hash并求模,将文件分解为多个小文件,对于单个文件利用上题的方法求出每个文件件中10个最常出现的词。然后再进行归并处理,找出最终的10个最常出现的词。

100w个数中找出最大的100个数?

方案1: 采用局部淘汰法。选取前100个元素,并排序,记为序列L。然后一次扫描剩余的元素x,与排好序的100个元素中最小的元素比,如果比这个最小的要大,那么把这个最小的元素删除,并把x利用插入排序的思想,插入到序列L中。依次循环,知道扫描了所有的元素。复杂度为O(100w*100)。

方案2: 采用快速排序的思想,每次分割之后只考虑比轴大的一部分,知道比轴大的一部分在比100多的时候,采用传统排序算法排序,取前100个。复杂度为O(100w*100)。

方案3: 在前面的题中,我们已经提到了,用一个含100个元素的最小堆完成。复杂度为O(100w*lg100)。

5亿个int找它们的中位数?

  • 思路一

这个例子比上面那个更明显。首先我们将int划分为2^16个区域,然后读取数据统计落到各个区域里的数的个数,之后我们根据统计结果就可以判断中位数落到那个区域,同时知道这个区域中的第几大数刚好是中位数。然后第二次扫描我们只统计落在这个区域中的那些数就可以了。

实际上,如果不是int是int64,我们可以经过3次这样的划分即可降低到可以接受的程度。即可以先将int64分成224个区域,然后确定区域的第几大数,在将该区域分成220个子区域,然后确定是子区域的第几大数,然后子区域里的数的个数只有2^20,就可以直接利用direct addr table进行统计了。

  • 思路二

同样需要做两遍统计,如果数据存在硬盘上,就需要读取2次。

方法同基数排序有些像,开一个大小为65536的Int数组,第一遍读取,统计Int32的高16位的情况,也就是0-65535,都算作0,65536 - 131071都算作1。就相当于用该数除以65536。Int32 除以 65536的结果不会超过65536种情况,因此开一个长度为65536的数组计数就可以。每读取一个数,数组中对应的计数+1,考虑有负数的情况,需要将结果加32768后,记录在相应的数组内。

第一遍统计之后,遍历数组,逐个累加统计,看中位数处于哪个区间,比如处于区间k,那么0- k-1的区间里数字的数量sum应该<n/2(2.5亿)。而k+1 - 65535的计数和也<n/2,第二遍统计同上面的方法类似,但这次只统计处于区间k的情况,也就是说(x / 65536) + 32768 = k。统计只统计低16位的情况。并且利用刚才统计的sum,比如sum = 2.49亿,那么现在就是要在低16位里面找100万个数(2.5亿-2.49亿)。这次计数之后,再统计一下,看中位数所处的区间,最后将高位和低位组合一下就是结果了。

在2.5亿个整数中找出不重复的整数,注,内存不足以容纳这2.5亿个整数。

  • 方案1: 采用2-Bitmap(每个数分配2bit,00表示不存在,01表示出现一次,10表示多次,11无意义)进行,共需内存2^32 * 2 bit=1 GB内存,还可以接受。然后扫描这2.5亿个整数,查看Bitmap中相对应位,如果是00变01,01变10,10保持不变。所描完事后,查看bitmap,把对应位是01的整数输出即可。
  • 方案2: 也可采用分治,划分小文件的方法。然后在小文件中找出不重复的整数,并排序。然后再进行归并,注意去除重复的元素。

给40亿个不重复的unsigned int的整数,没排过序的,然后再给一个数,如何快速判断这个数是否在那40亿个数当中?

用位图/Bitmap的方法,申请512M的内存,一个bit位代表一个unsigned int值。读入40亿个数,设置相应的bit位,读入要查询的数,查看相应bit位是否为1,为1表示存在,为0表示不存在。

7.5 加密算法

什么是摘要算法?有哪些?

消息摘要算法的主要特征是加密过程不需要密钥,并且经过加密的数据无法被解密,目前可以解密逆向的只有CRC32算法,只有输入相同的明文数据经过相同的消息摘要算法才能得到相同的密文。消息摘要算法不存在密钥的管理与分发问题,适合于分布式网络上使用。消息摘要算法主要应用在“数字签名”领域,作为对明文的摘要算法。

  • 何谓数字签名?

数字签名主要用到了非对称密钥加密技术与数字摘要技术。数字签名技术是将摘要信息用发送者的私钥加密,与原文一起传送给接收者。接收者只有用发送者的公钥才能解密被加密的摘要信息,然后用HASH函数对收到的原文产生一个摘要信息,与解密的摘要信息对比。如果相同,则说明收到的信息是完整的,在传输过程中没有被修改,否则说明信息被修改过.

因此数字签名能够验证信息的完整性。

数字签名是个加密的过程,数字签名验证是个解密的过程。

  • 有哪些摘要算法

著名的摘要算法有RSA公司的MD5算法和SHA-1算法及其大量的变体

什么是加密算法?有哪些?

数据加密的基本过程就是对原来为明文的文件或数据按某种算法进行处理,使其成为不可读的一段代码为“密文”,使其只能在输入相应的密钥之后才能显示出原容,通过这样的途径来达到保护数据不被非法人窃取、阅读的目的。 该过程的逆过程为解密,即将该编码信息转化为其原来数据的过程。

加密算法分类

密钥加密技术的密码体制分为对称密钥体制和非对称密钥体制两种。相应地,对数据加密的技术分为两类,即对称加密(私人密钥加密)和非对称加密(公开密钥加密)。

对称加密以数据加密标准(DES,Data Encryption Standard)算法为典型代表,非对称加密通常以RSA(Rivest Shamir Adleman)算法为代表。

对称加密的加密密钥和解密密钥相同。非对称加密的加密密钥和解密密钥不同,加密密钥可以公开而解密密钥需要保密

什么是国密算法?有哪些?

  • SM1 为对称加密。其加密强度与AES相当。该算法不公开,调用该算法时,需要通过加密芯片的接口进行调用
  • SM2 非对称加密,基于ECC。该算法已公开。由于该算法基于ECC,故其签名速度与秘钥生成速度都快于RSA。ECC 256位(SM2采用的就是ECC 256位的一种)安全强度比RSA 2048位高,但运算速度快于RSA。
  • SM3 消息摘要。可以用MD5作为对比理解。该算法已公开。校验结果为256位。
  • SM4 无线局域网标准的分组数据算法。对称加密,密钥长度和分组长度均为128位。
  • SM7 是一种分组密码算法,分组长度为128比特,密钥长度为128比特。SM7适用于非接触式IC卡,应用包括身份识别类应用(门禁卡、工作证、参赛证),票务类应用(大型赛事门票、展会门票),支付与通卡类应用(积分消费卡、校园一卡通、企业一卡通等)。
  • SM9 不需要申请数字证书,适用于互联网应用的各种新兴应用的安全保障。如基于云技术的密码服务、电子邮件安全、智能终端保护、物联网安全、云存储安全等等。这些安全应用可采用手机号码或邮件地址作为公钥,实现数据加密、身份认证、通话加密、通道加密等安全应用,并具有使用方便,易于部署的特点,从而开启了普及密码算法的大门。