pre-train

209 阅读2分钟

介绍

预训练是指在大规模未标注数据上进行的训练,目的是学习到通用的特征表示。与传统的监督学习不同,预训练使用的数据并没有标注好的标签,因此可以大量地获取数据来训练模型。

预训练常用的方法包括自编码器、对抗生成网络等。以自编码器为例,其基本思想是通过将输入数据压缩成低维度编码,然后再将编码解压成输入数据的方式,来学习到数据的特征表示。在预训练过程中,自编码器的目标是最小化输入数据和解压缩后的重构数据之间的差异,同时保持编码维度足够小,以避免过拟合。

由于预训练可以充分利用大规模未标注数据,因此得到的模型具有很好的泛化能力,并且可以被应用于各种不同的任务。例如,在自然语言处理领域,预训练模型如BERT、GPT等已经成为了该领域的主流技术,取得了很好的效果。

需要注意的是,预训练虽然可以充分利用未标注数据来学习特征,但是由于模型的结构相对复杂,预训练需要花费大量的计算资源和时间来完成。

在深度学习中,预训练和训练是两个不同的阶段。

预训练(pre-training)指的是在大规模未标注数据上进行的训练,目的是学习到通用的特征表示。预训练常用的方法包括自编码器、对抗生成网络等。预训练得到的模型通常称为预训练模型,这些模型通常具有很好的泛化能力,并且可以被应用于各种不同的任务。

训练(fine-tuning)则是指在特定任务上对预训练模型进行微调,使其适应该任务。训练通常需要少量的标注数据,并且通常使用反向传播算法进行优化,以最小化模型在该任务上的损失函数。通过训练,模型可以逐渐地适应特定任务的要求,并且在该任务上表现出色。

因此,预训练是一种通用模型的构建过程,而训练是针对具体任务的模型优化过程。