HDU1016 Prime Ring Problem(素数环,深搜DFS)

67 阅读1分钟

题目:

Prime Ring Problem

**Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 45061    Accepted Submission(s): 19969
**
\

Problem Description

A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.

Note: the number of first circle should always be 1.

\

 

\

Input

n (0 < n < 20).\

 

\

Output

The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.

You are to write a program that completes above process.

Print a blank line after each case.\

 

\

Sample Input

  
  

   
   6
8
  
  

 

\

Sample Output

  
  

   
   Case 1:
1 4 3 2 5 6
1 6 5 2 3 4

Case 2:
1 2 3 8 5 6 7 4
1 2 5 8 3 4 7 6
1 4 7 6 5 8 3 2
1 6 7 4 3 8 5 2
  
  

 

\

思路:

利用搜索,枚举每一种可能,然后把符合条件的输出

代码:

#include <stdio.h>
#include <string.h>
#define mem(a,b) memset(a,b,sizeof(a))
int prime[100]= {1,1};
int a[50],md[50],n;//a来存放素数环里的数,md是做标记
void sushu()
{
    int i,j;
    for(i=2; i<=10; i++)
        if(prime[i]==0)
            for(j=2*i; j<=50; j+=i)
                prime[j]=1;//把不是素数的标记为1
}
void dfs(int step)
{
    int i,j;
    if(step==n+1&&prime[a[n]+a[1]]==0)//结束条件,这个代码是从a[1]开始的
    {
        for(i=1; i<n; i++)
            printf("%d ",a[i]);
        printf("%d\n",a[n]);
        return;
    }
    for(i=2; i<=n; i++)
    {
        if(md[i]==0&&prime[i+a[step-1]]==0)
        {
            a[step]=i;//给素数环填数
            md[i]=1;//标记一下走过的
            dfs(step+1);//搜索下一步
            md[i]=0;//标记回来
        }
    }
    return;
}
int main()
{
    int num=1;
    a[1]=1;//从1开始的
    sushu();
    while(~scanf("%d",&n))
    {
        mem(md,0);
        printf("Case %d:\n",num++);
        dfs(2);
        printf("\n");
    }
    return 0;
}


\